DIVISION 26 - ELECTRICAL

See Part II for additional information regarding Lighting, Energy Efficiency, etc.

DESIGN CRITERIA

Verify points of connection to existing utilities with the University’s Representative. All utility service, including electric, telephone, fire alarm, data, etc. are to be underground. Wire building for telephone, data, EMS, and fire alarm.

Building electrical systems should be 480/277 volts, 3 phase, 4 wire and/or 208/120 volt, 3-phase, 4-wire for lighting and power.

Harmonics - Building harmonics shall be evaluated and documented by the Design Professional. Submit harmonics report to University’s Representative for review. Identify corrective measures if harmonics exceeds building requirements. Following are a few possible corrective measures: Separate neutrals for branch circuits, full size grounding, K-rated transformers, upsize panel board neutral conductor, reduce total harmonic distortion of electronic ballasts, etc. Discuss with University’s Representative prior to establishing any of the corrective measures.

CORRIDOR RECEPTACES

Provide dedicated 20-amp, 120-volt circuits to feed corridor 20-amp duplex receptacles only (4 maximum per circuit). Spacing shall be no more than 50 feet. Maximum distance from any end wall shall be 25 feet.

POWER SYSTEM STUDY

1. Perform Arc Flash, Short Circuit, Protective Device Evaluation and Protective Device Coordination Studies. Study shall be performed utilizing SKM software. Study shall be prepared and signed by a California registered Electrical Engineer. Submit studies to University’s Representative prior to receiving final acceptance of distribution equipment shop drawings or prior to release of equipment for manufacture. If formal completion of studies may cause delay in equipment manufacture, acceptance from University’s Representative may be obtained for preliminary submittal of sufficient study data to ensure that selection of device ratings and characteristics will be satisfactory. Provide for both normal and emergency systems.

2. Studies shall include all portions of electrical distribution system from the point of connection, primary of service transformers down to and including 480V and 208V distribution system. Normal system connections and those which result in maximum fault condition shall be adequately covered in the study. University has an agreement in place with Cammisa & Wpif consulting firm for Arc Flash and Short Circuit study on the primary side of the service transformer.

3. Study report shall summarize results of system study in a final report. The following sections shall be included in the report:
 a. Description, purpose, basis and scope of study and single line diagram of that portion of power system which is included within scope of study.
b. Tabulations of circuit breaker, fuse and other protective device ratings versus calculated short circuit duties and commentary regarding same.

c. Protective device time versus current coordination curves, tabulations or relay and circuit breaker trip settings, fuse selection and commentary regarding same.

d. Fault current calculations including a definition of terms and guide for interpretation of computer printout.

e. Arc Flash hazard warning labels shall be provided for each electrical device that is likely to require examination, adjustment, servicing, or maintenance. This includes, but not limited to, panelboards, switchboards, switchgear, motor control centers, disconnect switches, and meter socket enclosures.

4. Protective Device Testing, Calibration and Adjustment: Equipment manufacturer shall provide the services of a qualified field engineer and necessary tools and equipment to test, calibrate and adjust the protective relays and circuit breaker trip devices as recommended in the power system study.

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 26 05 19

PRODUCTS
Conductor - Stranded copper. Minimum size: #12 AWG, unless specified otherwise.
Insulation - THWN for wet or underground locations and THHN for dry or damp locations. Other insulation may be specified, depending on use.

Wire Connectors
1. For wires size #8 AWG and smaller: insulated pressure type (with live spring) rated 105 deg. C, 600V, for building wiring and 1000V in signs or fixtures.
2. For wires size #6 AWG and larger: Circular compression embossed with proper die code.
3. Outdoors and below grade: All sizes to be compression type with heat shrink style watertight splice covers.

Wire Terminations
Connections shall be long-barrel, bi-Metal, circular compression embossed with proper die code, two-hole lugs, machine bolted with flat washers and lock washers.

EXECUTION
Install all wiring in raceways. All cables and wires passing through manholes and handholes shall be full looped inside the manhole and handhole and supported on galvanized steel racks.

Code size ground wire installed in all raceways, secured using approved methods to each pole box, junction box, and equipment housing.

Provide wire markers where number of conductors in a box exceeds 4.

Wire Color Code - Color code all conductors. Wire sizes #6 AWG or smaller shall have integral color coded insulation. Wire sizes #4 AWG and larger may have black insulation but identified by color coded electrical tape at all junction, splice, pull, or termination points. Color tape shall be applied 1/2 lap to at least 6 inches of conductor. Color Code wires as follows (confirm with University's Representative):
Conductors	120/208 Volts	277/480 Volts
Phase A | Black | Brown
Phase B | Red | Orange
Phase C | Blue | Yellow
Neutral | White | White or Gray
Ground | Green | Green

Color coding of wires used for signal and communication systems are specified under the respective sections for these systems.

TESTING
Megger and record insulation resistance of all 600 volt insulated conductors size #4/0 AWG and larger, using a 500 volt megger for 1 minute. Make tests with circuits isolated from source and load.

GROUNDING
The grounding system shall provide a connection to earth for the system derived neutrals, for the service equipment enclosures, and for the distribution cable shield drain wires. The grounding system shall provide control of the voltage gradient on the finished surfaces adjacent to the pad mounted service equipment. The Grounding System shall include all of the following elements:

GROUND ELECTRODES
1. Ground Grid - A cable loop in the earth, with driven ground rods, in a ring around the service equipment pad/vault, with connecting cable. Minimum of 1 grounding rod inside the transformer and 1 outside the pad.
2. UFER Ground - A length of copper cable embedded in the concrete foundation of the facility being served.
3. Metallic Piping - A connection to the interior metal piping system.

GROUND BUSES
Provide at each Service Distribution Panel for the joining of ground connections, and to provide an accessible grounding system test location. From each Ground bus make the following ground connections:
1. The metal enclosure of the associated Load Service Distribution Panel.
2. The metal tank of the associated Load Service Transformer.
3. The ground bus in the facility panelboards. This bonding cable to be run in the same raceway with the facility service feeder cable.
4. Neutral busing of each service transformer to the system neutral(s) is prohibited.

GROUND CONNECTIONS
Provide a separate copper cable connection from each of the ground electrodes to the system ground bus at each of the Service Distribution Panels. Provide the code required size of grounding conductor between the transformer secondary compartment and the building main panel ground.
All ground connections shall be long-barrel, bi-metal, pressure indented two-hole lugs, machine bolted with flat washers and lock washers installed.

GROUND RODS
Copper clad steel rods, 1 inch by the required dimension, in sectional 10 foot lengths with pointed end, driven to a depth where the rod top is not less than 6 inches below finish grade at the Equipment Pad and two inches above the floor in the Equipment Vault. Protect rod top with a driving tool while driving to prevent deformation or other damage.

CABLE CONNECTIONS
1. To Ground Rods - Exothermic weld, Cadweld or equal, utilizing weld molds furnished by the weld manufacturer and the type and size recommended by the weld manufacturer.
2. Ground Cable Splices - Exothermic weld, Cadweld, or equal, utilizing molds of the type and size recommended by the weld manufacturer.
3. To Ground Buses and to Equipment - Pressure indented copper cable terminal, one hole: Burndy HYLUG, T&B Blue, or equal. Install with inch galvanized or cadmium plated steel machine bolts with beveled washer each side.

TESTING
Grounding test shall be by fall-of potential method by an independent testing agency.

HANGERS AND SUPPORTS
26 05 29

CONDUIT SUPPORTS
Single point beam clamps not allowed. Conduits shall not be attached to ceiling support wires. For individual conduit runs not directly fastened to the structure, use rod hangers. For multiple conduit runs, use trapeze type structural channel conduit support designed for maximum deflection not greater than 1/8 inch. In new construction, conduits installed inside of walls must have approved clamp supports. No twisted wire allowed.

EQUIPMENT MOUNTING AND SUPPORT HARDWARE
Steel channels, bolts, washers, etc., used for mounting or support of electrical equipment shall be galvanized type. Where installed in corrosive environment stainless steel hardware shall be used.

RACEWAY AND BOXES
26 05 33
Sizes for conduits, unless specifically shown otherwise, shall meet the latest California Electric Code using 30 percent fill. Minimum conduit size shall be 3/4 inch.

MATERIALS
Rigid steel conduit with threaded fittings shall be used in the following locations:
1. Damp and wet locations including outdoor service yards and on roof.
2. Exposed locations below 8 feet subject to mechanical injury.
3. In concrete walls or block walls.
4. In concrete vaults.
EMT connectors and couplings shall be steel compression with insulated throat type indoors. Wireway: Code gauge steel, with knockouts and hinged cover. Corrosion resistant gray baked enamel finish. Wireways smaller than Wiremold brand 700 are not acceptable. Wireway with preassembled devices installed are not acceptable, i.e. Wiremold 2000 and 2200.

Use flexible steel conduits with steel Tite-Bite type connectors in the following applications and install a code sized ground wire 3-foot maximum length on flexible conduit except as authorized by University's Representative:

1. Recessed lighting fixtures.
3. Connection between fan plenum and structure.
4. At expansion joints.
5. At transformers and other equipment which produces vibration.
6. At damp and wet locations or where exposed to weather, flexible steel conduit shall be liquid tight type.

Flexible steel conduits (with code size ground wire) up to 20 feet in length are permitted between receptacles and between light fixtures within a single room. All home runs to panels and conduit between rooms shall be EMT.

EXECUTION
Duct shaft - Conduits shall not cross any duct shaft or area designated as future duct shaft horizontally.

Pull Strings - Install 1/8 inch diameter yellow polyline pull line in all conduits intended for future use. Tag pull lines for item served.

Sleeves - Provide at all penetrations of footings, basement walls, or floor slabs.

UNDERGROUND DUCTS AND RACEWAYS

In addition to the requirements listed above, the following applies to underground ducts and raceways. Provide line markers per Section 33 05 26.

PRODUCTS
Direct Burial and Concrete Encased Raceway - PVC Schedule 40 Duct and end bells except for the following locations which shall be rigid steel conduit:

1. Provide one 10 foot section of rigid steel conduit at point of penetration of foundation, footing or basement wall, with equal lengths inside and outside building line.
2. Make all risers to grade, including elbows. Risers to begin 18 inches below grade and extend 16 inches above grade.
3. Exposed in vaults.

Rigid steel conduit in direct contact with earth, sand or encased in concrete must be double-wrapped with 3M 10-mil tape or equal.
Elbows - Factory made. Use a minimum radius of 6 times trade size.

Handholes - pre-cast concrete type with structurally reinforced roadway type bolt-down galvanized steel covers and required extension collars. Units shall be provided with concrete bottoms and sumps.

EXECUTION
Multiple conduits shall maintain 3 inch minimum separation between conduits. Provide plastic spacers at maximum 5 feet-0 inch centers to maintain 3 inch spacing between conduits. Do not install plastic conduit in rock base. Provide double wrapped GRC elbows on runs greater than 100 feet or on runs with more than two 90-degree elbows.

PVC conduit 1-1/2 inch size and smaller shall be installed on 2 inch sand base and covered by 2 inch sand backfill. In planting areas provide 2-inch concrete cap.

Concrete encased duct banks shall contain a single system. Duct Banks for different systems shall not be encased together. There shall be a separation between the concrete encasement for each separate system when combined in a “shared trench”. Concrete encased duct banks in shared trenches shall be side by side and not stacked upon one another.

Install 3 inch minimum concrete encasement on raceways larger than 1-1/2 inch conduit or duct banks that include two or more raceways in a single trench. Drive two reinforcing bars to anchor the conduits at 10 feet-0 inch centers to prevent floating during concrete pour.

Burial Depth
1. Concrete encased: 24 inch minimum for 600V or lower systems to top of concrete encasement.
2. Concrete capped: 24 inch minimum to top of conduit.
3. Conduits without concrete encasement or cap: 24 inch minimum to top of conduit.
4. Conduits under buildings: 18 inches below bottom of floor slab.

Handholes shall be left in a clean condition with all debris removed and with all cables supported on approved cable supports. All stubs for handholes shall be concrete encased and shall extend 5 inches beyond handhole.

All electric conduit or ducts shall be at least 10 feet from steam lines unless engineered to prevent heat damage.

TESTING
All underground conduits and ducts 2 inch and larger shall be proven clear by pulling through a mandrel 0.25 inches smaller than the inside diameter.
SWITCH AND RECEPTACLE LABELS
Provide clear color base dymo labels on all lighting switches and convenience and special purpose receptacles to show panel and circuit number to which the device is connected.

CABLE BOX AND VAULT COVERS
Bronze plate, machine engraved with Vault, Manhole, or Box designation in 3/8 inch high capital letters. Marker attached with epoxy adhesive to the cover. Cable Box and vault covers to have ‘ELECTRIC’ welded onto box or vault rim.

CABLE BOX RACEWAY ENTRANCES
Apply stenciled label on wall to identify destination of raceways. Use building name, equipment name, manhole number, or cable box number.

NAMEPLATES
Provide rigid plastic laminated Impact Acrylic plate, 2 layer, 3/16 inch min thickness, machine engraved with 3/8 inch high lettering, all caps, on black background. Provide nameplates for meters, transformers, panels, motor starters, disconnect switches and all associated devices. Black background with white letters (normal power), red background with white letters for emergency power. For remote devices (disc. switches, etc.) and all panels, indicate source of power.

WARNING SIGNS
Provide plastic laminated Impact Acrylic plate, 2 layer, 3/16 inch min thickness, machine engraved with red lettering, all caps, on white background. Lettering 2 inches high. Provide label on all motors: “Caution, Automatic equipment. May start at any time.” Provide warning signs for service transformers.

FEEDER TAGS
Engraved laminated Impact Acrylic Tag: Engraved with white lettering on black background, letter 3/8 inches high with 1 piece nylon tie.

PHASE MARKERS
Cable Phase Markers: Clear plastic over wrap-to-wrap 1 -1/4 times (min) around cable. Label colored per color-coding with phase letter printed 1 inch high. Apply marker to each cable.

WIRE MARKERS
Slipon Wire Markers: PVC wire marker with permanent machine printed or embossed lettering.
GENERAL REQUIREMENTS
The lighting control system shall consist of operating software, network bridges and switches, room controllers, occupancy and photo-sensors, and dimming controls.

The manufacturing company shall be regularly engaged in the manufacture of lighting control equipment and ancillary equipment, specifically of types and capacities required, whose products have been in satisfactory use in similar service for not less than five years.

The building interior lighting control system shall be WattStopper Digital Lighting Management (DLM) or Siemens Total Room Automation (TRA) solution.

The lighting control system specifications developed by the design professional shall be patterned after the UC Davis standard Energy Management Systems (EMS) specifications. Consult University’s Representative for details.

The system shall include, but not be limited to the following features and capabilities:

- Programmable with real-time monitoring of lighting and plug loads.
- Status readable using a connection to a “MS Windows” based computer operating system running the supplier’s software package.
- Integrated into the Campus central lighting control system.
- Accessible and maintainable from the Campus central control location.
- System must have remote access ability for the factory to access the system and help troubleshoot, program, or alter the system without being on-site and service must be available 24 hours a day, 365 days a year. Normal factory assistance using this connection shall be available after the required warranty period.
- Operating software shall communicate with the local networks, providing control, monitoring, adjustment, and scheduling capabilities.
- Systems must retain their program internally for up to one year including a loss of power and must automatically restore themselves after a power outage to its condition prior to the outage.
- A loss of control input power or control operating system shall cause the lighting relays to fail in the “ON” or “Emergency” position. All relays shall have an option for a “manual ON” bypass position for use during troubleshooting or operating system loss.
- Firmware updates required to maintain system functionality and to prevent obsolescence shall be supported by the lighting control and the EMS system manufacturers.
- Historical system data storage with trending and graphics software.
- System must be able to operate in a simulated fully-operational condition for troubleshooting and programming purposes while the relays are locked in the “ON” position.
- All lighting controls shall be assembled, wired, commissioned and tested to operate as a complete integral system and shall provide the lighting control features specified in this document.
- Local room networks shall consist of an addressable room controller which accepts inputs from addressable occupancy sensors, daylighting sensors, and switches to drive the lighting load and the network devices shall be connected to a network bridge which provides two-way communication with the operating software.
- If any relay panel, control, switch or sensor fails, the remaining portion of the system needs to continue operating with only a loss of the failing component.
• Occupancy sensors shall be integrated into the building Energy Management System (EMS) via hardwire where needed.
• Zone HVAC Integrated Occupancy sensor status shall be visible to EMS at all times.
• Consult University Representative for standard low-voltage cable color.
• An empty 3/4 inch conduit shall be run between the main access point and the designated telecommunication location for system internet access.

LIGHTING CONTROLS BY CAMPUS PROJECT TYPES
The lighting control system shall be scalable for applications including new facility, major retrofits and minor renovation campus applications, as defined below. Installation, commissioning and acceptance testing shall follow Title 24 and Campus Design Guide requirements.

New Facility and Major Retrofit Applications: The installation, commissioning and acceptance testing of all lighting control system components and features as defined in General Requirements section are required. Building space types shall be controlled as defined in the ‘Lighting Control by Space Type’ section of this document.

Minor Renovations: Installation, commissioning, and acceptance testing is required for lighting control system components capable of the standalone room/space level lighting control strategies as defined in ‘Lighting Control by Space Type’. All standalone installations shall be designed for future inclusion into lighting control system infrastructure.

LIGHTING CONTROL BY SPACE TYPE
Classroom: A room lighting control station shall be provided to turn lights on and off, dim the lights, and provide for optional scene selection functions. The lighting control shall be divided into multiple zones including back, center and front of the room, depending on the size. If applies, the room can have dimming zones that will be controlled by daylight sensors. One dimming zone controls the lighting by the windows and one dimming zone controls the lighting adjacent or middle part of the room. Ceiling occupancy sensors shall automatically turn the lights off. Refer to Section 27 41 16 for lighting requirements in multimedia spaces.

Lecture Hall: A room lighting control station shall be provided to turn lights on and off, dim the lights, and provide for scene selection functions. The lighting control shall be divided into multiple zones including back, center and front of the room, depending on the size. If applies, the room can have dimming zones that will be controlled by daylight sensors. One dimming zone controls the lighting by the windows and one dimming zone controls the lighting adjacent or middle part of the room. Ceiling occupancy sensors shall automatically turn the lights off. Refer to Section 27 41 16 for lighting requirements in multimedia spaces.

Laboratories: Ceiling occupancy sensors shall automatically turn the lights on and off. Room switching is provided by buttons on the room lighting control station on one end of the room and mirrored by buttons on the lighting control station on all other room entrances. If applicable, the room can have two dimming zones that will be controlled by daylight sensors. One dimming zone controls the lighting by the windows and one dimming zone controls the lighting adjacent or middle part of the room. The lighting not controlled by the dimming system shall be controlled by lighting controls and associated occupancy sensors. The task lights over the lab module benches shall have integral switches. The associated occupancy sensors automatically turn the task lights off.
Offices: Dimmer switch shall turn the lights on manually at 50% with option to decrease or increase to 100%. The ceiling occupancy sensors shall automatically turn the lights off in accordance with Title 24.

Conference Rooms: Ceiling occupancy sensors shall automatically turn the lights on and off. Dimming and scene selection functions for turning the lights on and off to the room is provided by buttons on the lighting controls station. If applicable, the lighting shall be divided into multiple zones, one for each of three walls and one for the center of the room.

Hallways and Stairways: Occupancy sensors shall turn the lights on and off. Minimum lighting level shall be maintained at intersections of corridors, elevator and exit doors, stairwells and building entry points. Lighting controls shall allow for graduated lighting levels and daylight harvesting and/or occupancy sensor controls to be incorporated and adjusted for that area.

Lobby and Common Areas: Local occupancy sensors shall turn the lights on and off. If it applies, the area can have two dimming zones that shall be controlled by daylight sensors. One dimming zone controls the lighting by the windows and one dimming zone controls the lighting adjacent or middle part of the area. Lighting controls shall allow for common areas to be controlled as appropriate per Title 24.

Restrooms: Ceiling occupancy sensors shall turn the lights on and off.

Janitor Closet: Ceiling occupancy sensors shall turn the lights on and off.

Electrical, Mechanical, and Telecom Rooms: Local manual switch shall turn the lights on or off.

Elevator Equipment Rooms: Local manual switch shall turn the lights on or off.

For Exterior Lighting, refer to section 26 56 00.

LIGHTING CONTROL DEVICES
Occupancy Sensors: Addressable-type, programmable digital occupancy sensors, appropriate for the area usages and room types, shall be utilized in all spaces with the exception of special areas assigned in the project building program.

Passive Infrared Occupancy Sensors: Passive-infrared sensors require a direct line of sight to function properly. This means any obstructions such as walls, partitions, etc. between the sensor and the intended target will keep the sensor from triggering occupancy. Passive-infrared sensors have varied coverage ranges and patterns. An appropriate range and coverage pattern should be determined based on application, traffic patterns, and fixture compliance. Operating mode shall be based on Title 24 requirements for each space type.

Ultrasonic Occupancy Sensors: Ultrasonic sensors utilize the Doppler principle to detect occupancy through emitting a high frequency signal and sensing the frequency change of the reflected signal caused by the introduction of an occupant in the space. Ultrasonic sensors do not require direct line-of-sight to function properly, however they should not be installed within six feet of HVAC ducts or registers to avoid false triggering. Ultrasonic sensors have varied coverage ranges. An appropriate range should be determined based on application, traffic patterns, and fixture compliance. Operating mode shall be based on Title 24 requirements for each space type.
Dual Technology Occupancy Sensors: Shall meet all requirements of Passive Infrared and Ultrasonic Occupancy Sensors described above.

Daylighting Sensors: Daylight sensors, appropriate for the area usages and room types, shall be utilized in all side-lit and top-lit spaces. Larger rooms with multiple zones shall utilize ceiling mounted sensor in an open loop configuration to measure the daylight only and not incorporate the electric lighting in its reading. The daylighting system shall provide continuous dimming of the light fixtures to maintain minimum light levels.

LIGHTING CONTROLS CERTIFICATION REQUIREMENTS
Lighting controls shall be UL Listed. Lighting control panels controlling emergency circuits shall be ETL listed to UL 924. Emergency source circuits controlled in normal operation by a relay panel shall fully comply with NEC 700-9(b). Contractor is responsible for verifying compliance.

DIMMING SYSTEM
Light dimming equipment shall have the following features:
1. Continuous dimming curve (not universal dimming as other products).
2. Field programmable.
3. Published “in-rush” current information.

LOW-VOLTAGE TRANSFORMERS 26 22 00
Dry type transformers shall be copper-wound, meeting US Department of Energy's Candidate Standard Level Three (CSL-3) efficiency. Transformers shall be designed to exceed the latest requirements of the California Code of Regulations Title 20 and Title 24 and NEMA TP-1 efficiency standards.

All sizes of transformers shall have a 115 degree centigrade temperature rise rating, K-rated and naturally ventilated (fan-assisted cooling are not acceptable). Housekeeping pads are required for floor mounted transformers. Provide external vibration isolators.

TESTING

SWITCHBOARDS AND PANELBOARDS 26 24 00
Service to distribution equipment must be sized to their rated capacity and not the calculated load. Main circuit breaker shall have a local open and closed buttons with adjustable trip settings. All large frame circuit breakers shall be equipped with lock-out and tag-out devices. Provide 25 percent spare capacity. Each panelboard shall have a maximum of 42 poles and a dedicated feeder with a hinged door-in-door cover. Provide copper bussing for switchboards and panelboards. AIC rating to conform to power system study results. Housekeeping pads are required for the main switchboard and other electrical equipment in mechanical rooms. Switchgear shall be of the arc resistant design and shall be equipped with viewports that allow for infra-red thermography without opening the enclosure.
TELECOMMUNICATIONS SPACE (TS) ELECTRICAL REQUIREMENTS

1. A sub-panel or at a minimum, ALL TS's shall be provided dedicated electrical service in all ADF/BDF/IDF (ER/TR) rooms. The estimated electrical load for the telecommunications space shall not exceed 80 percent of the panel.

2. Dedicated power circuits from shared panel boards shall be provided with both transient voltage surge suppression and electrical high frequency noise filtering.

3. If a low number of telecommunications spaces are planned, one electrical panel may serve multiple telecommunications spaces as a design alternative.

4. Sub-panels shall be located near the room entrance door, whenever possible, to conserve wall space and should be connected to an emergency power source if available to the building. Emergency power is especially important in the TS's that house Digital Loop Carrier systems to ensure voice and emergency systems remain operational during power outages that may extend past the systems battery backup capability.

5. HVAC systems shall not use the same electrical panel that is used to support telecommunications spaces.

ELECTRICITY METERING

Provide each new building, or portion thereof with a separate electrical meter. Major renovations shall provide new meters. Verify with the University’s Representative.

POWER MONITORS

Provide one Power Monitor at each of the service transformers as part of the service instrumentation along with Current Transformers (CT's) and Voltage/Potential Transformers (PT'S), and necessary terminal and shorting blocks. Isolate the service instrumentation panel and power monitor from the distribution bussing in the switchgear with a physical barrier.

Integration with Campus System

1. The instrumentation shall integrate into and shall be capable of communication with the Campus distribution SCADA System. The Monitoring Unit shall be capable of communicating with the Campus Distribution Central SCADA Unit by means of Ethernet.

2. Where more than one power monitor is installed per building, connect them together using 22 AWG, shielded, twisted pair, 4 conductor RS485 serial cable using straight-line or loop topology. (ION 7350 only, limit 4 meters per loop.)

3. When using the straight-line topology, a termination resistor is required on the last meter on the line. From the first meter, install a communications cable (CAT5, or equal) to and the data NAM.

Provide pre-shipment testing of the Power Monitor and Service Instrumentation Panel with written certification that the communications system are set to interface with the University of California, Davis Power Distribution SCADA System.

PRODUCTS

Refer to Division 33
Communications interface: All power meters must have Ethernet.

FIBER OPTIC TRANSCEIVER
The Fiber Optic Transceiver shall match existing equipment connected to the Campus Utilities SCADA network to ensure consistent communications between devices and the central server. The current H&L 542B Transceiver with PML option has serial ports 1 and 2 are EIA-232. Serial port 3 is a fully opto-isolated EIA-485 port. Provide two fiber optic ports for transmitting and receiving optical loop signals over multimode fiber cable. Unit has a built in Repeater and Synchronizing circuit. Install transceiver in National Electrical Manufacturers Association (NEMA) 1 steel enclosure.

Manufacturer and Vendor

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Cat No.</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&L Instruments,</td>
<td>Fiber Optic</td>
<td>542B (PML option)</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Or equal (no known equal)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each instrumentation set shall consist of a single solid-state digital monitoring unit with front of panel display and display control. Parameters to be monitored and displayable shall include the following: Volts, Amps, kVA, kVAR, kWD, PF, kWh, and kVarh. In addition, with the Campus Central SCADA Unit, the Monitor shall be capable of voltage/current wave form analysis.

EXECUTION
Power monitors and associated components shall be mounted between 3 feet and 6 feet from the finished floor.

Conduits
1. Install a 2 inch empty conduit from the power monitor to the telecommunication building distribution frame (BDF).
2. Install a 3/4 inch conduit between the power monitor and the main energy system panel.
3. The EMS contractor shall run wiring and interface the power monitor to the building energy management system for remote monitoring.

Sub-Metering
Provide sub-metering for building lighting system, plug loads, and HVAC. Consult University’s Representative for additional sub-metering to meet project goal.

Programming
1. Programming shall be verified by the University’s Representative upon energizing the service.
2. Programming of the monitoring units shall be done from the front panel.
3. The unit shall also be capable of down loading programming from the Campus SCADA Master Unit.
4. Key programming information (Phase Current Transformers ratio, Phase Voltage Input values, phase rotation, volts mode (wye or delta) etc.) to be clearly documented and accessible for site verification of programming during initial testing of the devices.

WIRING DEVICES

Wall (Local) Switches - Totally enclosed, AC rated, premium industrial specification grade, white, or match existing finish. 120/277V, 20 amps or low voltage if appropriate for lighting control system integration.

Duplex convenience receptacles - premium industrial grade 3 wire grounded, nylon face, rated 20 amps, 125V. Receptacles connected to emergency circuit shall be red in color, all other devices shall be white or match existing face.

Ground fault interrupter (GFI) receptacles: 3 wire grounded, white, or match existing finish, rated 20 amps, 125V. Provide waterproof lift cover for outdoor installation.

Unless otherwise noted on drawings, mounting heights of devices shall be as follows:

- Switches: 42 inches
- Receptacles: 18 inches

Install all receptacles uniformly with U-ground slot down. Twist lock and power receptacles, ground up. Circuiting of duplex receptacles shall be limited to a maximum of 4 per circuit.

TELECOMMUNICATIONS SPACE (TS) ELECTRICAL REQUIREMENTS

Convenience duplex receptacles shall be:

1. Mounted in each room at +18 inches AFF and horizontally spaced not to exceed 6-feet around the perimeter of the room.
2. Non-switched, 120VAC 20 Amp, duplex and divided equally on branch circuits, (i.e. all receptacles in the same room shall not all be on the same circuit). Minimum of 2 circuits shall be provided per room alternating duplexes around room with no more than four (4) receptacles on the same circuit.
3. Each receptacle shall be clearly marked with its respective circuit number.

EQUIPMENT RACK AND CABINET ELECTRICAL REQUIREMENTS

1. Equipment racks identified for electronic equipment shall have the following installed:
 a. One (1) quad device box containing two (2) duplex 20 Amp, 120V AC NEMA 5-20R-spade receptacles located on separate dedicated circuits in the room sub-power panel.
 b. Device box shall be mounted on the backside of each rack 15 inches Above the Finished Floor (AFF). The placement of this device box and its EMT conduit shall not block or interfere with the equipment mounting area (rails) on either side of the rack.
 c. A minimum of 24-inches of flexible conduit shall be used to attach electrical service to the equipment rack. Flexible conduit is required to prevent the shearing of the conduit during a seismic event.
d. Reference Division 27 11 16, Communications Cabinets, Racks and Enclosures, Fig. 31.

2. Enclosed cabinets identified for electronic equipment shall have the following installed:
 a. Two (2) quad device boxes containing two (2) duplex 20 Amp, 120V AC NEMA 5-20R-spade receptacles to separate dedicated circuits located in the room sub-power panel.
 b. One (1) device box shall be mounted toward the back of the cabinet near the top inside area of the cabinet to provide electrical power to the cooling fan(s). The second device box shall be located 15 inches above the floor toward the back of the cabinet.
 c. The device boxes and EMT conduit shall not block or interfere with the equipment mounting area (inside and outside mounting rails) within the cabinet.
 e. Reference Division 27 11 16, Communications Cabinets, Racks and Enclosures, Figure 30.

3. Special considerations:
 a. ADF equipment racks and cabinets shall have 30 Amp, 120V AC NEMA 5-30R-spade receptacles in place of the 20 Amp, 120V AC NEMA 5-20R-spade receptacles.
 b. Provide a duplex 20 Amp, 240V NEMA 6-15R receptacle for a DLC cabinet.

LOW-VOLTAGE CIRCUIT PROTECTION DEVICES 26 28 00

CIRCUIT BREAKERS
Provide molded case circuit breakers conforming to Underwriters' Laboratories, Inc. (UL) 489:
1. Breaker shall be thermal-magnetic type common trip with one operating handle and solid state 7 or 9 function trip unit.
2. Adjacent poles shall be connected to phases A, B, C, respectively.
3. Minimum symmetrical interrupting current rating shall be as indicated.
4. Connectors shall be designed for use with copper, copper clad, or aluminum conductors.
5. Mounting shall be “bolt-on” type, removable without disturbing any other breaker.

SAFETY DISCONNECT SWITCHES
Heavy duty type, 600v, HP rated for motors. All disconnect switches shall be National Electrical Manufacturers Association (NEMA) Type HD; lockable in the “Off” position. Provide defeater mechanism to bypass this mechanism.

ENCLOSED CONTROLLERS 26 29 13

MOTOR CONTROL
Motor starters need ambient compensated overload relays with single-phase protection. Starters mounted in high ambient temperatures do not provide required protection for motors. The common starter depends on an element heated by the current draw of the motor, ambient temperature adds or decreases to this. Without single-phase protection, motors will burn out when source power loses a phase. The solid-state type overload relay provides both of these protections, since it monitors the actual current the motor is drawing with built-in phase loss protection. We have utilized both the Westinghouse and Furnas solid state type starters in Motor Control Center starter replacement with good success. Provide manual thermal protection for all motors not integrally equipped with thermal protection. Include loss of phase protection. Provide power factor correction.

PRODUCTS
Overload Relay - Electronic Solid State type, (no heaters), with Phase Loss protection, short circuit protection, FLA adjustable trip over 2:1 range.

Control Voltage - 120vac unless otherwise specified. Individual mounted starters may have control transformer within enclosure. Starters mounted in Motor Control Centers to have control circuit from separate source, common to all starters. Control circuits to be disconnected when the disconnecting means is in the open position (Ref. 93 NEC 430-71), a minimum of 2 control circuit disconnect contacts to be provided, one for the starter and one for other circuits fed through the starter auxiliary contact.

Auxiliary Contacts - Each starter to have a minimum of two NO auxiliary contacts with provision to add a minimum of two more.

Selector Switch - To have HOA (Hand-Off-Auto) selector switch mounted in cover.

Pilot Light – Red LED pilot light mounted in cover to be activated through a starter auxiliary contact, (not across the coil, or parallel with the coil).

Starters for fractional horsepower 120V motors shall be manual type unless shown otherwise, equipped with built-in overload protection and pilot light.

VARIABLE-FREQUENCY MOTOR CONTROLS

The Variable Frequency Drive (VFD) assemblies for use on a standard NEMA Design B induction motors shall be UL listed, as one entire assembly, and bear the UL label. All circuit boards shall be completely tested and burned-in prior to assembly into the completed VFD. Functionally test all options, perform dynamometer test at full load, cycle load and speed during factory tests. VFD manufacturer shall have a failure analysis laboratory to evaluate the failure of any component. Provide power factor correction.

A site-specific preliminary harmonic analysis, showing total voltage harmonic distortion (THD) and total current harmonic distortion without additional external devices or external filters must be submitted. Compliance shall be empirically verified by the VFD manufacturer with onsite field measurements of the harmonic distortion at the point of common coupling with and without VFD’s operating. The building distribution transformer(s) shall be the point of common coupling. In the event that field measurements demonstrate that harmonic distortion exceeds the levels claimed by VFD manufacturer, then VFD manufacturer shall provide and install (at no additional cost to the University) the equipment required to reduce harmonic distortion to acceptable levels.

Warranty - The VFD shall be warranted against defects in material and workmanship for a period of 36 months from the date of shipment or 24 months from date of start-up, whichever is longer. Additional warranty coverage shall be available in the form of an annual service agreement at an annual fee based on the capacity of the VFD.
PRODUCTS
The VFD shall be of an advanced Pulse Width Modulation (PWM) type capable of achieving full motor performance with no de-rating of motor output due to current waveform distortion. The VFD must be capable of operating multiple motors in parallel with the ability to switch motors on and off independently via external contactors. VFDs shall be supplied with the ability to communicate over an RS485 network to the Building Management System. VFDs shall be manufactured by Asea Brown Boveri (ABB), Graham/Danfoss, Siemens, or equal.

1. The VFD shall include the following ratings, adjustments, and parameters:
 a. Power unit rating: 100 percent continuous, 110 percent intermittent for one minute when previously operating at full load.
 b. Minimum efficiency: 98 percent at max. output; 92 percent at 50 percent output.
 c. Power Factor
 1) Displacement > 0.95
 2) True (Including Harmonic Distortion) > 0.85
 d. Rated input voltage: 480V, 3 phase, 60Hz and 230V 60Hz available.
 e. Output voltage: 0-480V or 0-230V 60Hz.
 f. Allowable wire length to motor: 200 ft. (unless VFD schedule shows greater wire length).
 g. Automatic motor tuning.

2. The VFD must be capable of operating in the following service conditions:
 a. Ambient Temperature: 0 to 40 degrees C (32 to 104 degrees F).
 b. Relative Humidity: 0 to 95 percent, noncondensing.
 c. Elevation: 0 to 3300 ft. (100 meters) above MSL.
 d. AC line voltage variation.
 1) 480 V: 440-10 percent to 500+10 percent; 45-65 Hz
 2) 230 V: 200-10 percent to 230+10 percent; 45-65 Hz

3. Singularly, each VFD shall produce a maximum of 3 percent harmonic voltage distortion (THD) without additional external devices or external filters, and simultaneous operation of multiple VFD's shall not add more than 5 percent total harmonic voltage distortion back to the bus when measured at the point of common coupling without additional external devices or external filters. The building distribution transformer(s) shall be the point of common coupling.

4. Each VFD shall consist of a converter, inductor, and inverter section. The input of the VFD shall be ground fault protected and require no isolation transformer. In addition, the input of the VFD shall be able to withstand switching of the input line power up to 20 times per hour without damage.

5. The power section shall allow the following faults to occur without damage to the VFD:
 a. Single-phase fault or three phase short circuit.
 b. Phase to ground short circuits.
 c. Severe overloads.

6. The VFD must withstand unlimited switching of the output under full load without damage to the VFD. Operation of code required disconnect switch on load side of drive, whether motor is operating or not, shall not have any adverse effect on the drive. Control conductors from the disconnect to the drive shall not be required for safe and reliable operation of the drive.

To ensure safety of the equipment, the VFD shall include these protection features:
a. Over current protection.
b. Over speed protection.
c. Power unit over temperature protection.
d. Electronic Thermal motor protection.
e. Responsive reaction to motor winding temperature detectors.

7. The VFD shall be a NEMA enclosure as specified in the VFD schedule, designed for wall mounting. All standard and optional features shall be included within the VFD enclosure, unless otherwise specified.

8. A stand-alone PID controller shall be standard in the drive, allowing a pressure or flow signal to be connected to the VFD, using the microprocessor in the VFD for closed loop control.

9. Minimum of 500 milliseconds power loss ride through without drive trip or loss of programming.

10. The VFD shall operate satisfactorily when connected to a bus supplying other solid-state power conversion equipment which may be causing up to 10 percent total harmonic voltage distortion and commutation notches up to 36,500 volt microseconds.

Adjustments

1. VFD adjustments shall be set digitally via menu driven selections accessible from the front panel of the VFD and include the following:
 a. Max. Speed: 0-200 percent base speed (0 to 120Hz).
 b. Min. Speed: 0-200 percent base speed (0 to 120Hz).
 c. Jog Speed: 0-200 percent base speed (0 to 120Hz).
 d. Independent accel/decel time: 0.1 to 1,800 seconds.
 e. Current Limit: 0 to 100 percent cont., 160 percent for up to 1 minute.
 g. Start Voltage (Voltage Boost).
 h. Start Compensation (Volts per Amps Boost) 0 to 20V/A.
 i. Dynamic Slip Compensation: 0 to 200 percent. Speed regulation: 0.5 percent with up to 90 percent load change.
 j. Starting Torque at motor shaft: 160 percent.
 k. Four Independent Parameter sets.
 l. RS-485 Serial Communications.
 m. Programmable Carrier Frequency 2-14 kHz.
 n. Flying Start into motor rotating in either direction without creating fault.
 o. Four bypass frequencies w/ adjustable bandwidth.

2. The VFD shall operate in the AUTO or MANUAL modes and, as a minimum, shall include the following front panel mounted switches and indicators:
 a. 2 line by 14-character alphanumeric English language display with ability to exhibit any two parameters simultaneously. (Code numbers are not acceptable.) LCD displays shall be backlit.
 b. Local/Remote switch.
 c. Digital indicator of freq., current, volts, torque, Hp, kW, kWhrs, Motor or VFD Electronic Thermal Relay (ETR), Run Hours.
 d. Manual speed control.
e. Run / Stop Switch.
f. Fwd / Rev Switch.
g. Power on and run indicator.
h. Fault indication including: current limit, over voltage, under voltage, overload, or thermal motor protection.

3. The VFD shall have provisions to lock out unauthorized access to alter or reprogram the VFD’s set points.

Control Requirements
1. The VFD shall be capable of operation with either a two wire maintained contact motor control circuit or a three wire start/stop momentary contact motor control circuit. The VFD shall have an automatic restart circuit to automatically return the drive to full operation after a protective trip. The number of restart attempts, attempt duration and time between reset attempts shall be programmable. In addition, the VFD must accept the inputs and provide the outputs listed below:
 a. Analog input: 0-10Vdc, 0-20mA, 4-20mA, 20-0mA or 20-4mA. Linearity deviation between control signal and motor speed: +or-1 percent of rated motor speed.
 b. Digital Inputs: 8 each programmable for reset, start, stop, quick stop, reversing, change to preset speed (up to 8 preset speeds), change parameter set, increase speed, decrease speed, current limit override.
 c. Analog outputs: 2 each programmable to provide 0-20mA or 4-20mA proportional to frequency, torque, current or power (Kw).
 d. Digital outputs: 2 each programmable to indicate ready, run, trip, current above preset, frequency above preset, or electronic thermal overload.
 e. Input for motor thermocouple.

2. The drive control card shall be fully interchangeable between all drive sizes fractional through 300 HP to provide a consistent user interface, including display, keypad and terminal connections.

3. All control input and output terminals are isolated from power and ground with isolation capable of withstanding 2,500 volts RMS for one minute.

BYPASS
Review VFD Bypass requirements with University’s Representative.

Manual Bypass
1. Manual transfer to line power shall be via 3 contactors sized for applicable voltage and motor current. One contactor shall be between the VFD output and the motor. The second shall be between the bypass power line and the motor, providing across-the-line starting. The third contactor shall be between the line voltage and VFD input. Transferring load via contactors shall disconnect VFD inputs from line voltage and outputs from the motor, thus providing the ability to safely troubleshoot and test the VFD while operating in the bypass mode. A fused disconnect switch is required. Bypass and VFD output contactors to be electrically and mechanically interlocked to prevent both being closed at the same time. Include motor thermal overload protection in bypass and VFD modes. If the drive can provide the bypass feature as an integral part of its construction, this shall be acceptable.
2. Provide two 3-position selector switches to control bypass contactor and the VFD input and output contactors: 1) Normal-Off-Test and 2) Drive-Off-Bypass. Selector switches to have pad-lockable switch covers.

3. Door mounted status lights shall include power on, drive, bypass, and safety.

4. Provide terminal strip for connection of fire, smoke contacts, external start command and VFD control signal. All external interlocks shall function in hand, auto, or bypass. External start/stop signal to be functional in auto and bypass modes.

5. 120 vac control power to be supplied by fused transformer.

6. Provide NEMA 1 enclosure for bypass components. NEMA 4 enclosure required for outdoor applications. Bypass and VFD enclosures to be factory wired and assembled on a common back-plate.

7. Manual Bypass and Accessories to be furnished and mounted by the VFD manufacturer.

8. Two contactor bypasses and knife switches are not acceptable.

Automatic Bypass with Magnetic Contactors
In rare applications, such as critical service pumps with no secondary pump for backup, the VFD shall be specified with automatic bypass. The automatic bypass shall include all of the features specified in the manual bypass plus the following additional feature: Output from the VFD run contact shall control the contactors so that a VFD failure shall automatically transfer the motor to across-the-line starting.

EXECUTION
Install VFD in dry, clean and accessible area. Provide appropriate environmental conditions for VFDs to allow them to dissipate heat effectively. Provide filtering as required.

SHAFT GROUNDING
For more information, refer to Division 23, Section 23 05 13, Common Motor Requirements.

PACKAGED GENERATOR ASSEMBLIES 26 32 00

GENERAL
Generators must comply with Yolo-Solano Air Quality Management District (Y-S AQMD) Rule 2-32 (Stationary Internal Combustion Engines), and meet the State "Air Toxic Control Measures" (ATCM) for stationary compression ignition engines. The particulate matter (PM) emission rate shall be less than or equal to 0.15 g/BHP-hr. Authority to Construct (ATC) permits must be obtained from the air district prior to installation and operation of generators. Generator engines that have a brake-horsepower rating of 50 BHP or greater trigger air permitting with Y-SAQMD. EH&S will assist DCM by reviewing the generator engine specifications and preparing the air permit application package. The Engine Generator assembly and the Transfer Switch are to be furnished as one complete operating system and factory built, tested and shipped by a single manufacturer.

Technical support & service - The Manufacturer shall provide through a single source supplier who shall be the Manufacturer’s authorized local representative, initial start-up services and be responsible for conducting field acceptance testing. To have factory trained service technicians to provide 24-hour service availability who are qualified to isolate and correct any typical malfunction of the Engine,
Generator, Controls, Automatic Transfer Switch, and implement repair. The Supplier shall have service facilities within 80 miles of the Davis Campus.

Furnished Documentation - Provide all computer operating software, hardware and associated licensing that is specific to a particular unit (in addition to what may be generic to all units), such as special programming software and hardware used to interface between laptop and generator. Provide base service operating program for engine and generator adjustments and maintenance diagnostics with correct dongle for interfacing with engine, generator and automatic transfer switch. Total of three sets of software.

Furnish operating, service and parts manuals, marked up wiring diagrams for engine, generator controls and Automatic Transfer Switch (ATS). Wiring diagrams must be clearly marked to show wire number and terminal number of connection points of any aftermarket added accessories (items not installed at factory level), as well as customer connections points. All documentation for added accessories to be delivered with manuals and wiring diagrams. Provide a detailed list of programmed inputs, outputs and time delays.

Warranty - A warranty by a generator set manufacturer which places responsibility on the engine or generator manufacturer shall not be acceptable. Warranties shall start per the Contract Documents and extend for a minimum of 2 years. Warranty shall include repairs or replacement of components of the generator, engine, controls, and ATS packages that fall in materials or workmanship within the specified warranty period. Work provided under the warranty shall be provided by a single, manufacture approved representative.

Submittals – Submit diagrams showing the electronic modular control panel (EMCP), engine interconnection, engine sensors, and wiring to the controller.

PRODUCTS
The Electric Engine Generator System shall be rated by the manufacturer for “standby” operation for 3 phase, 4 wire, 60 HZ at 1800 RPM (KW, KVA, and Volts, as specified at 0.8 PF). The engine and generator housings to be mechanically connected together mounted on a heavy-duty steel base with vibration isolators. Base shall be high enough to easily drain the engine oil. An engine oil drainpipe and valve assembly shall be installed by the manufacturer, to extend outside the base. The engine oil and fuel filters shall be spin-on type. Provide rodent protection for the entire generator package unit (the Unit shall be screened to prevent mice and rates to enter the unit).

Provide outside security light on both emergency and normal power and inside light and a convenience receptacle on both emergency and normal power. Provide water access within 25 feet.

Provide work platforms around generators with sub-base fuel tanks 300 gallons or larger with sub-base height of 18 inches or more. Platforms to be at all generator access doors. Platforms are to include guardrails and access ladders. Access panels must have ability to fully open with platform in place. The system shall have the following electrical characteristics:
1. Voltage regulation shall be within 2 percent of rated voltage.
2. An electronic, isochronous governor shall control frequency regulation. Frequency regulation shall be within 5 percent from steady state no load to steady state full load.
3. Harmonic distortion - The sum of AC voltage waveform harmonics, from no load to full linear load shall not exceed 5 percent of rated voltage. No single harmonic shall exceed 3 percent of rated load.
4. Telephone Influence Factor (TIF) shall be less than 50 per NEMA MGI-22.43.

Enclosure and Access
1. The engine and generator housing must be mechanically connected together mounted on a heavy-duty steel base with vibration isolators. Base shall be high enough to easily drain the engine oil. An engine oil drainpipe and valve assembly shall be installed by the manufacturer, to extend outside the base. The engine oil and fuel filters shall be spin-on type.
2. Provide fixed service ladder to access roof of enclosure for all combination type 500 KW and larger generators.
3. Generator enclosure with electrically operated louvers shall have the spring assist open type louvers and must open when generator is running. The enclosure must have outside security lights, inside lights and a convenience receptacle. Lights and receptacle to operate on both emergency and normal power.
4. Generator must have rodent protection for the entire generator package (screened to prevent small rodents from entering).
5. Water access should be provided within 25 feet.
6. Generators with sub-base fuel tanks 300 gallons or larger with sub-base height of 18 inches or more must have work platforms. Work platforms to be at all generator access doors and must include guardrails and access step ladder. All access doors must be able to fully open with platform in place.

Engine - Four-cycle, 1800 RPM. Water-cooled, rated to operate at 10 percent overload for one hour at specified elevation and ambient limits. Turbocharged, after-cooled, and timing retard.

Engine Emissions - Y-S AQMD certified catalytic converters may be required to comply with the new ATCM emission standards. Engines equipped with a certified serviceable catalytic converter shall be provided with an exhaust stack thermometer and an exhaust differential pressure monitoring system that will alarm when the catalytic converter needs servicing.

Load Bank: Provide a freestanding permanent mounted load bank for generators sized at 500-KW or larger. The load bank shall be a complete system with all necessary controls, wiring, and devices to provide a functional system. Load bank controller shall be mounted next to the load bank in an outdoor rated enclosure with cover to protect display from weather. The load bank shall have field configurable capability to provide automatic loading, automatic exercise, regenerative control, base loading and manual loading capability. Sizing of load banks may be reduced to 70 percent of the total generator capacity. The load bank shall be forced air cooled. The cooling fan(s) shall be an airfoil profile with direct drive by a three (3) phase, TEFC, 1800 RPM induction motor. The motor shall be rated at the maximum brake horsepower of the fan propeller for the applied static pressure load,
temperature and altitude parameters. For generators sized at less than 500-KW, provide provisions for future connection (additional lugs for hook-up) of a portable load bank.

Fuel - Diesel (preferred for ease of reserve fuel requirements), or natural gas and propane with manual changeover dual fuel system (to meet requirements of "On-site Reserve Fuel Supply", Re: National Electric Code, NFPA70, 700-12 b & c).

Fuel tank must be of double wall construction and be equipped with fuel leak detection system, complete with wiring and controls that monitor the interstitial space. Generator sets with diesel fuel tanks must have a Racor fuel/water separator filtration system added to engine fuel supply. Fuel tanks above 800 gallons must have a diesel fuel polishing system.

Generators driven by natural gas powered engines shall be mounted on an 18 inch rust proof platform and must have metal skirting for protection from rodents. Generator must have a low fuel pressure switch and a fuel pressure gauge in the fuel supply line.

Generator

1. Shall be single sealed bearing, self-aligning, four pole brushless synchronous type, revolving field, with amortisseur windings, and direct drive centrifugal blower for proper cooling and minimum noise. No brushes type shall be allowed. Generator shall be direct connected to the engine flywheel housing, generator shaft to be connected to the engine flywheel by a flexible stainless steel plate to insure permanent alignment. Gear driven generators are not acceptable. Generator design shall prevent potentially damaging shaft currents.

2. Insulation shall meet NEMA class F. The maximum temperature shall not exceed 105 degrees C at 40 degrees C ambient.

3. The 3-phase broad range reconnectable generator shall have 12 leads brought out to allow connection by user to obtain any of the available voltages of the unit.

4. Voltage Regulator shall be temperature compensated, solid-state design, and shall function by controlling the exciter magnetic field between stator and rotor. Shall be of an asynchronous pulse width modulated design that is insensitive to severe load induced wave-shape distortion from SCR or Thyristor circuits such as those used in battery charging (UPS) and motor speed control equipment (VFD). Regulator design shall include a torque-matching characteristic to allow the engine to use its fullest power producing capacity (without exceeding it or over compensating) at speeds lower than rated, to optimize motor starting capability and provide the fastest possible recovery from transient speed dips. Regulators that use a fixed volts per Hertz characteristic are not acceptable.

5. Exciter shall be three phase, full wave, rectified, with heavy-duty silicon diodes mounted on the common rotor shaft and sized for maximum motor starting loads. Systems using three wire solid-state control elements (such as transistors or SCR's) on the rotor shall not be acceptable.

6. Provide an exciter field automatic circuit breaker, mounted on the control panel, of the manual reset only type (cannot be used as a manual disconnect) for protection of exciter field and regulator.
7. Provide fixed service ladder to roof enclosure for all combination type 500 kw and larger generators and tank packages.

Control Panel

1. The control shall have automatic remote start capability. A panel mounted selector switch shall stop the engine in the STOP position, start and run the engine in the RUN position, and allow the engine to start and run by closing a remote contact when in the REMOTE position.

2. Provide a generator mounted control panel for complete and control and monitoring of the engine and generator set functions. Panel shall include automatic start/stop operation; adjustable cycle cranking, digital AC metering (0.5 percent true rms accuracy) with phase selector switch, digital engine monitoring, shutdown sensors and alarms with horn and reset, adjustable cool-down timer and emergency stop push-button. Panel shall incorporate self-diagnostics capabilities and fault logging. Critical components shall be environmentally sealed to protect against failure from moisture and dirt. Components shall be housed in a NEMA 1/IP22 enclosure.

3. Provide the following digital readouts:
 a. Engine Oil Pressure
 b. Coolant Temperature
 c. Engine RPM
 d. System DC Volts
 e. Generator AC Volts
 f. Generator AC Amps
 g. Generator Frequency
 h. KW Meter
 i. Percentage of Rated Power
 j. KVA Meter
 k. KVAR Meter
 l. Power Factor Meter
 m. KWHR Meter
 n. Event history log

4. Control panel indicating lights: red light for all engine/generator critical shutdowns, yellow/amber light for warnings, green light for indicating generator is in auto and a flashing red light to indicate the generator is not in the automatic start mode.

5. Analog display control panels shall have a 12 light engine monitor on the control panel; 1 red light for each of the 4 shutdowns (except the remote manual stop), and 1 yellow light each for the high engine temperature and low oil pressure pre-alarms, and 1 green run light, a flashing red light to indicate the generator is not in the automatic start mode, a yellow light to indicate low coolant temperature, a yellow light to indicate low fuel, and 2 red lights for auxiliary use (for a total of twelve lights). A panel-mounted switch shall reset the engine monitor and test the lamps. The engine generator starting batteries shall power the monitor. Operation of shut down circuits shall be independent of indication and pre-alarm circuits. Individual relay signals shall be provided for each indication for external circuit connections (not to exceed 1/2 amp draw) for a remote annunciator.
6. The NEMA 1 enclosed control panel shall be mounted on the generator set with vibration isolators. The control shall include surge suppression for protection of solid state components. A front control panel illumination light with ON/OFF switch shall be provided. Control panel mounted meters and devices shall include; Engine oil pressure Gauge, Coolant Temperature Gauge, DC voltmeter and Running Time Meter (readout in 1/10th hour increments); Voltage adjusting rheostat, Locking screwdriver type to adjust voltage +/- 5 percent from rated value; Analog AC Voltmeter, dual range, 2 percent accuracy, Ammeter, 2 percent accuracy, Analog Frequency Meter 45-65 Hz. +/- 0.6 Hz accuracy; 7 position selector switch.

7. Provide common trouble and engine running contacts for external connection to audible alarm.

8. All generator sets installed outdoors must have a thermostat controlled strip heater in the controller and in the alternator end.

Accessories - The following are to be furnished by the manufacturer/supplier as part of the complete engine generator system; starting batteries, sized as recommended by the manufacturer with battery cables and connectors, battery tray, battery charger and engine block heater.

Battery Charger: Must be 10 amp, temperature compensating, float/equalize style with alarms, powered by 120 VAC (this is in addition to the alternator mounted on the engine).

Engine Jacket Heater: Thermal circulation type with internal thermostat and heavy duty relay type contactor sufficient to handle the current requirements of the heater. (Thermostat normally furnished with unit does not have contact rating for long life). Engine block heater hoses must be high temperature resistant, constructed of silicone rubber. Provide shut off valves for block heater. Battery charger control power shall be independent from engine block heater control power.

STANDBY POWER
All emergency generator alarms shall be interfaced with the campus remote monitoring system.

AUTOMATIC TRANSFER SWITCHES (ATS) 26 36 00

Automatic transfer switch to have a full rated neutral with lugs for NORMAL, EMERGENCY and LOAD neutral conductors inside cabinet (4 pole with a switched neutral). Equipped with direct acting linear operators for simple, reliable and fast acting during automatic operation.

Transfer Switch must incorporate the following:

2. Test Switch: To simulate failure of normal source.
3. In-Phase Monitor: Controls transfer/retransfer operation between live sources when sources are approaching zero phase angle.
5. Programmed transition delay feature: This feature shall provide a field adjustable time delay during switching in both directions, during which time the load is isolated from both power sources, to allow residual voltage of motors or other inductive loads (such as transformers) to decay before completing the switching cycle. The programmed transition feature shall have an adjustable time of 0 to 30 seconds minimum.

6. Signal: Provide a signal for before transfer and post transfer with adjustable time delay from 0.1 to 10 seconds, for elevators controls.

7. Inhibit switch: 2 position switch to manually inhibit the operation of the transfer mechanism.

8. Metering: Provide analog ammeter, voltmeter and frequency meter.

9. Digital controller must provide access to controller settings and the following readouts:
 a) Voltage
 b) Amperage
 c) Frequency
 d) ATS status
 e) Event history
 f) Active time delays
 g) Controller settings
 h) Event history

All outdoor installed ATS must have a retractable cover to protect the screen/controls from the weather and must have a thermostat controlled strip heater for moisture control.

ATS shall have two sets of contacts each for annunciation of contactor in Normal position and contactor in Emergency position as well as a common trouble alarm contact.

All ATS alarms shall be interfaced with the campus remote monitoring system.

INTERIOR LIGHTING

GENERAL REQUIREMENTS

Lighting levels shall conform to Illuminating Engineering Society of North America (IESNA) standards (see the IESNA Lighting Handbook: Reference & application or the IESNA Lighting Ready Reference). Zone lighting or task lighting shall be utilized whenever energy efficiency can be improved by these measures. See CDG Part II, Energy Efficiency Requirements for additional information. Refer to the "How to Comply with the Latest Lighting Standards" published by the California Lighting Technology Center (CLTC) for lighting guidelines.

USER CONTROLLABILITY OF LIGHTING

Provide individual lighting controls for the building occupants, enabling adjustments to suit individual task needs and preferences. Provide lighting system controllability for all shared multi-occupant spaces enabling adjustment to meet group needs and preferences.
For large open spaces such as open plan offices, consider the size of the space and the potential for additional zones of lighting control. Observe the space and determine how the area may be divided and where the additional lighting controls would be in relation to the location of the occupants in the each area. Unless all maintenance parts are accessible through the light fixture opening or adjacent access doors (i.e. branch conductors, splices, led driver etc.), recessed downlights in hard lid locations shall not be less than four inches in diameter. Use 1,000 square feet as a general rule of thumb for the size of the area. Review the plan with the University's Representative for approval.

LIGHTING CONTROLS
See Section 26 09 23 for additional lighting control requirements.

GLARE REDUCTION
Exterior Effect
Design interior lighting so that the angle of maximum candela from each interior luminaire as located in the building shall intersect opaque building interior surfaces and not exit out through the windows OR maintain all non-emergency lighting on a programmable timer that turns lighting off during non-business hours. Provide manual override capability for afterhours use.

Interior
Minimize glare from exposed lamps and avoid luminaires with high fixture brightness.

FIXTURES (office, classroom, laboratory, studio, public areas / other related educational spaces)
For new construction and major and minor renovations, provide light emitting diode (LED) luminaires. LED luminaires shall have a color temperature of 4000k within a 4-step MacAdam ellipse; CRI > 90; dimming performance from 10 - 100 percent without flicker or noise; power factor > 0.9; 5 year replacement warranty.
* Color change technology (2700-5000k) is highly recommended in specialized applications such as medical, dormitory and long-diurnal spaces. Consult University's Representative for recommended applications.

FIXTURES (dormitory/residential)
For new construction and major and minor renovations, provide light emitting diode (LED) luminaires. LED luminaires shall have a color temperature of 2700k within a 4-step MacAdam ellipse; CRI > 90; dimming performance from 10 - 100 percent without flicker or noise; power factor > 0.9; 5 year replacement warranty.
* Color change technology (2700-3000k) is highly recommended. Consult University's Representative for recommended applications.

FIXTURE TYPES
For acceptable types of fixtures contact University’s Representative for approval.

Incandescent and halogen fixtures are not acceptable. Edison and pin base type fixtures are acceptable with JA8 (LED) compliant lamps.

Interior fixtures shall be standard manufacturer models with standard colors and finishes or match existing. All custom colors and finishes shall be approved in writing by University's Representative.
Low brightness lenses shall be utilized for offices, classrooms, and laboratories. For non-standard or custom light fixtures, provide 2 additional fixtures per project for attic stock.

SPECIALTY APPLICATIONS

Use bi-level luminaires in stairwells. A bi-level luminary integrates an occupancy sensor into the fixture which either switches one lamp off or “dims” the entire fixture to a maximum of 50 percent when the space is vacant.

Use Integrated Classroom Lighting Systems (ICLS) in classrooms. ICLS is a design approach developed by the California Energy Commission though the PIER program. An ICLS integrates suspended fixtures with occupancy sensors, entry switches, and teacher control keypad into one package that provides reduced connected load, improved lighting quality, and improved occupant satisfaction.

Use task/ambient lighting in offices, laboratories, and other task/ambient oriented spaces. Task/ambient lighting approach involves using tasking and ambient lighting to get the appropriate light level need to perform a task. Using the task/ambient lighting approach, energy efficient task lighting (such as the Integrated Office Lighting System - IOLS) should be specified thus allowing the ambient lighting power to be reduced. Ensure the CCT of the general and task lighting match.

Laboratories should incorporate best practices as applicable from the "Labs for the 21st Century: Best Practice Guide – Efficient Electric Lighting in Laboratories" (http://www.i2sl.org/documents/toolkit/bp_lighting_508.pdf) including:

1. Use indirect/direct lighting fixtures with at least 70 percent up light and at least 5 percent down light.
2. Make all light measurements 12 inch in from edge of work surfaces at 24 inch increments along the length of the work surface.
3. Evenly distribute the illumination over the full length of the bench.
4. Pay attention to reflective surfaces and glare.
5. Where a large amount of daylighting is available, the use of a higher CCT may be appropriate.
6. Provide a locally controlled task light level not to exceed 100 fc at 12 inch in from edge of work surface at all locations where critical task work may be performed. Tailor the light level to the specific task, closer to 100 fc for critical work, closer to 50 fc for non-critical work.
7. Match task lamp color temperature to general illumination color temperature.

TELECOMMUNICATIONS SPACE (TS) LIGHTING REQUIREMENTS

Room Lighting shall be mounted a minimum of 8-feet, 6 inches above the finished floor. Provide a minimum equivalent of 50 foot-candles when measured three feet AFF. Locate the lights parallel to the front and back of the equipment racks on both sides and in the middle of all aisles between racks or cabinets. Recommend at least one light fixture be on an emergency power circuit, if available in the building. Lighting shall not receive power from the same electrical distribution panel breaker as the telecommunications equipment in the TS.

EMERGENCY LIGHTING

Emergency egress lighting shall be provided by generator power, when possible. If no emergency generator is to be provided, individual battery pack lighting shall be provided in addition to general illumination.
For renovation applications, provide LED emergency lighting with NiCad battery pack or units connected to a power distribution and control unit able to provide emergency power. Units with battery packs shall not require factory replacement of batteries to preserve UL listing.

For restrooms emergency illumination devices shall be provided so as to illuminate the necessary path of egress to allow all occupants to exit the public toilet facility in a safe manner.

EXIT SIGNS

Emergency EXIT signs are to be the LED type. Maximum wattage per sign shall be less than 7 watts and the minimum warranty shall be 5 years. For new construction, signs are to be painted white and use green LED’s. For renovations where existing signs are not green, consult the University’s Representative for appropriate color selection of new exit signs. Tritium exit signs are specifically prohibited for use on the UCD Campus.

EXTERIOR LIGHTING

New installations shall comply with the latest edition of the (IESNA) Lighting Handbook and California Building Code Title 24. Light areas where exterior lighting is specifically required for safety and security. A photometric study is required to ensure the minimum lighting levels are met for each application category.

New installations shall be incorporated into the Campus exterior lighting controls system. Provide two switched conductors to each exterior fixture. Conductors should be located such that any fixture can be changed from one conductor to the other with minimal effort.

Exterior lighting control shall comply with the following:

A. Lighting controls shall integrate into existing Campus exterior central lighting control system. Consult University’s Representative for details.
B. Lumewave RF controller, provide one per fixture.
C. Adaptive lighting controls.
D. Occupancy Sensor, provide one per fixture.
E. Photosensor, provide one per fixture.
F. Shall be fully programmable from Campus remote central lighting control system.

Foundations: The hole for the foundation shall be augured or hand dug, any exception shall be pre-approved by the University’s Representative. Anchor bolts installed in foundations shall be provided with double nuts and washers. Anchor bolts shall be set in place and supported by the use of a template to maintain the true bolt circle before the concrete is poured. The University’s Representative shall inspect the work before the concrete is poured and must be contacted 48 hours before the scheduled pouring. The top of the foundation shall be three (3) inches above finished grade, trowel finished and level. Surplus excavation shall be disposed of by the contractor.

Provide emergency exterior egress lighting to adjacent public right-of-way. All exterior lighting, including egress lighting, shall be pole-mounted and interconnected to the Campus exterior lighting control system.
APPLICATION CATEGORIES

Table-1 presents the six major lighting categories deployed on the Campus. The physical attributes and performance criteria described for each category are based on commercially available technologies at time of this specification’s release. The lamps used in these fixtures include LED technology. Examples of source technologies currently in service on the Campus are provided as a reference in Table 1 and the specific fixtures in service establish the minimum acceptable performance criteria. Contact the University's Representative for information on these fixtures (performance and style).

The fixture style attribute is included only as a generic label for the acceptable luminaire in each category. All new fixtures must adhere closely to the aesthetic form factors noted in Table -1. Bollard fixtures shall not be used on any applications.

Unless otherwise noted, the following criteria shall apply to all fixtures:

1. All sources shall have an efficacy of 70 Lumens/Watt.
2. All fixtures shall be designed to minimize light pollution and glare, while meeting the light distribution requirements for a given category. A designation of full cutoff shall be considered one measure of compliance, but not the sole criteria in evaluating a fixture's ability to minimize light pollution and glare.

EXECUTION

1. A 13 inch wide by 17 inch wide by 12 inch deep pull box shall be located within 3 feet of any street, path or parking lot light foundation. All conduits leaving the control panel to the pull boxes adjacent to each street, path, or parking lot fixture shall be 2 inch P.V.C. Conduits from pull boxes to Individual Street, path, or parking lot fixture shall be 1 inch P.V.C. unless otherwise specified.
2. All vehicular street lighting electrical circuits shall be multi-staggered circuits. Street lighting systems shall be effectively grounded at the source. All conduit runs to contain a grounding conductor. Grounding electrodes shall not be installed at individual streetlights.
3. Parking lot, bicycle/pedestrian pathway, and bicycle parking lights shall have a concrete pull box installed adjacent to each fixture with conduits and wiring termination in pull box.

TABLE 1: EXTERIOR LIGHTING
<table>
<thead>
<tr>
<th>Exterior Lighting Categories [Note 1]</th>
<th>Fixture Style</th>
<th>Mfg. & Model # [Note 2]</th>
<th>Lamp Type</th>
<th>Pole / Mounting</th>
<th>Height (feet) [Note 3]</th>
<th>Finish: Pole or Fixture</th>
<th>Controls [Note 4]</th>
<th>Uniformity Ratio, Maximum to Minimum</th>
<th>Color (CRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicular Streets (Non-Restricted)</td>
<td>Slim-Profile, Elongated Oval</td>
<td>Lumec GPLS90W49 LED4K</td>
<td>LED</td>
<td>Tapered/rounded</td>
<td>20-30</td>
<td>Aluminum or Light Gray</td>
<td>Notes 9, 10, 11</td>
<td>6:1 (avg:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>Slim-Profile, Elongated Oval</td>
<td>Lumec GPLS 90W49LED4K</td>
<td>LED</td>
<td>Square (4 inch x 4 inch)</td>
<td>18</td>
<td>Dark Bronze</td>
<td>Notes 9, 10, 11, 13</td>
<td>20:1 (max:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Bike & Pedestrian Pathways, Restricted Vehicular Streets</td>
<td>Slim-Profile, Elongated Oval</td>
<td>Lumec GPLS 32L350NW-G2-R2S-UNV</td>
<td>LED</td>
<td>Square (4 inch x 4 inch)</td>
<td>16</td>
<td>Dark Bronze</td>
<td>Notes 9, 10, 11, 13</td>
<td>2:1 (avg:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Bike Parking & Plaza</td>
<td>Slim-Profile, Elongated Oval</td>
<td>Lumec GPLS 40W49LED4K</td>
<td>LED</td>
<td>Square (4 inch x 4 inch)</td>
<td>16</td>
<td>Dark Bronze</td>
<td>Notes 9, 10, 11, 13</td>
<td>2:1 (avg:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Parking Structure</td>
<td>Deck Mounted</td>
<td>--</td>
<td>LED</td>
<td>Deck</td>
<td>Garage height</td>
<td>Dark Bronze</td>
<td>Notes 8, 9, 10, 12, 13, 14</td>
<td>10:1 (max:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Building Mounted & Loading Dock [Note 4]</td>
<td>Wallpack (Cut-off)</td>
<td>--</td>
<td>LED</td>
<td>Building</td>
<td>14</td>
<td>Dark Bronze</td>
<td>Notes 9, 10, 12, 13, 14</td>
<td>N/A [Note 5]</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Wall Mounted Decorative & Architectural Lighting</td>
<td>As appropriate</td>
<td>As appropriate</td>
<td>LED</td>
<td>As appropriate</td>
<td>As appropriate</td>
<td>As appropriate</td>
<td>Notes 7, 11</td>
<td>N/A [Note 1]</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>PV Canopy</td>
<td>Deck Mounted</td>
<td>--</td>
<td>LED</td>
<td>Deck</td>
<td>Canopy Height</td>
<td>Dark Bronze</td>
<td>Notes 8, 9, 10, 12, 13, 14</td>
<td>10:1 (max:min)</td>
<td>3000K (>70)</td>
</tr>
<tr>
<td>Trash/Dumpster</td>
<td>Slim-Profile, Elongated Oval</td>
<td>Lumec GPLS-32L700NW-G2-R2S-UNV</td>
<td>LED</td>
<td>Square (4 inch x 4 inch)</td>
<td>16</td>
<td>Dark Bronze</td>
<td>Notes 9, 10, 11, 13</td>
<td>2:1 (avg:min)</td>
<td>3000K (>70)</td>
</tr>
</tbody>
</table>
NOTES:
1. Minimum light levels and uniformity ratios for all categories shall comply with the latest edition of Illuminating Engineering Society of North America (IESNA).
2. Or Equal.
3. Mounting and pole heights (in feet) to match with adjacent fixtures, where applicable.
4. Wall pack is not acceptable. Consult University’s Representative for any exception.
5. Wall-pack fixture, if accepted by University, to be down type (full-cut-off).
6. If fixture is located near walkway, apply Bike & Pedestrian Pathways minimum light levels.
7. Connect to the building lighting control system.
8. Adaptive lighting controls shall be used for parking lots and under PV canopies.
9. All exterior lighting controls shall integrate into existing Campus exterior Central Lighting Control System. Consult University’s Representative for details.
10. Lumewave RF controller, provide one per fixture.
11. 0-10V dimming power supply
12. Stepped dimming
13. Occupancy Sensor, provide one per fixture.
14. Photosensor, provide one per fixture.

REFERENCES

CONTROLS:
There are four types of occupancy sensor technologies; passive-infrared, ultrasonic, microwave, and audio based. Audio and ultrasonic technologies are inappropriate for exterior use because they can be triggered unintentionally by small animals, wind, rain, etc. This outline will assist in making an appropriate occupancy sensor selection based on the application and the type of fixture being controlled.

On/Off vs. Stepped-dimming Occupancy Controls
1. On/off occupancy controls consist of a lighting system that operates at full power and light output when occupied, and operates at zero power and light output when unoccupied. This functionality is appropriate for secondary use areas where occupant traffic is not required to enter at night.
2. Stepped-dimming occupancy controls consist of a lighting system that operates at full power and light output when occupied and operates at a reduced power level and light output (this level can be design or product specific) when unoccupied. This design method balances energy savings and safety. This functionality is appropriate for primary use areas.

Zonal vs. Individual Occupancy Controls
A zonal occupancy control design involves occupancy sensors controlling light fixtures that they are not directly associated with (e.g. - a parking lot with occupancy sensors at the entrance controlling all of the fixtures). Zonal occupancy controls can be cost effective and provide desired performance...
features but they are prone to “blind” spots (i.e., it is possible to occupy the controlled zone without being detected) and unreliable communication between sensors and fixtures.

1. Individual occupancy control design involves each controlled fixture having an integral occupancy sensor. This increases reliability and minimizes “blind” spots but can increase incremental cost.

Passive-infrared Occupancy Sensor
1. Passive-infrared sensors require a direct line of sight to function properly. This means any obstructions such as buildings, trees, etc. between the sensor and the intended target will keep the sensor from triggering occupancy.
2. Passive-infrared sensors have varied coverage ranges and patterns. An appropriate range and coverage pattern should be determined based on application, traffic patterns, and fixture compliance.

Microwave Occupancy Sensor
Microwave occupancy sensors can detect motion through some (but not all) mediums. These sensors can be useful when fixture penetration is not an option (e.g., wet location listing required). If the sensor is exposed to open air or through a thin acrylic sheet it can reduce blind spots due to unforeseen obstructions. However it is not typical for a microwave sensor to detect reliably through fixture housings. Unless a fixture is offered with an integral microwave sensor and a detailed coverage pattern, beware of specifying a sensor to be integrated into a housing.

END OF DIVISION 26