DIVISION 33 - UTILITIES

DESIGN CRITERIA

OVERVIEW OF CAMPUS ELECTRICAL DISTRIBUTION SYSTEM
The campus primary electrical distribution system is a primary selected radial loop system. The 60KV is supplied by PG&E to the University's 60KV substation located south of I-80. The University's 60KV substation is a ring bus configuration with six 60KV to 12.47KV transformers. The 12.47KV distribution system consists of five 600 amp feeders and one 1200 amp feeder: 5 load service feeders AF, BF, CF, EF and FF with a backup feeder DF. Each feeder consists of multiple parallel runs of cable. For example, cable runs in feeder "A" are designated A1, A2, A3 and A4. The campus has both overhead and underground distribution. The overhead is limited to areas south of I-80 and west of Highway 113. In order to keep the loop configuration intact, cable shall be looped in all pullboxes and manholes. All loop feeders will have an interrupter on main feed and an interrupter on the back up connection.

POTHOLING
Pothole all utility crossings and points of connection during the design phase and before finalizing the construction documents.

UTILITY LINE SIGNS, MARKERS, AND FLAGS

All non-metallic underground chilled water, domestic water and utility water piping shall be accompanied by a Solid Core #10 insulated copper tracer wire. Fasten the wire to the top of the pipe so as not to be displaced or broken during backfilling, such as by affixing the wire to the pipe with duct tape at approximately 10 feet intervals. Both ends of tracer wire shall be accessible at all utility valve boxes and manholes and shall be terminated on the top of the valve box.

Provide warning detectable tape for all underground utilities (chilled water, utility water, domestic water, sanitary sewer, gas, steam, electrical and telecommunication). Tape shall be permanent, bright-colored, continuous-printed plastic tape, intended for direct burial service; not less than 6 inches wide by 4 mils thick. Provide color coding appropriate to the utility with black printing reading CAUTION _________ (insert applicable utility) BURIED BELOW. The tape shall be installed directly over the pipe, 18 inches to 24 inches above the top of pipe. For concrete-encased high voltage electrical ductbanks, provide 1 warning tape for each 12 inch width of concrete duct bank or fraction thereof.

WATER DISTRIBUTION

GENERAL
Main line - a pipe that serves more than one service connection, branch line, fire hydrant, or any pipe that is 4 inch or larger.
Service Connections -
 Small (<2 inch) – corp stop at main.
 Medium (2 inch) – gate valve on service at main
 Large (>2 inch) – three valve tee
Fire service line – pipe that serves the internal fire suppression system of a building.
Branch line – chilled water connection from a main line to facility.
Domestic Water – campus potable water system used for all uses, including fire protection.
Utility Water – non-potable water system, primarily used for landscape irrigation.
Industrial Water – non-potable water supply system inside a building. A building's industrial water system is created by installing a backflow prevention device at a tee, downstream of the domestic water service backflow prevention device. The industrial water backflow device is intended to protect the building's occupants from labs and other research areas. Because industrial water is only located inside a building, it is not covered by this guideline.

Details required on plans - Where pipes have conflicts with other facilities, a detail or profile must be shown on the plans, or the plans must be sufficiently annotated to give clear direction for the installation. Plans shall show plan and profile details of connection to existing mains. Details shall accurately show any depth transitions or fittings required to make connections. Any deviation in alignment (horizontal or vertical), such as an under-crossing or over-crossing, shall be noted on the plans and contain a detail specific to each location. The detail shall show plan and profile views and include all relevant details, such as modified backfill materials, air vacuum/release valves, fittings, and type of pipe.

Plans shall note the location of all tie-ins and type of shutdown required, i.e. routine, large, or major. Valves shall be numbered with UCD O&M Engineering Services reference numbers on the construction documents.

PRODUCTS
Pipe and Fittings – Water main lines can either be:
 1. Ductile Cast Iron cement lined, pressure class 350 with either bell and spigot end, “Tyton Joints” or Mechanical Joints.
 2. Polyvinyl Chloride (PVC) minimum class 200, C900 for 4 inch through 12 inch; minimum class 165, C905 for 16 inch and larger
Water service pipe can either be the same as main lines or copper tubing C800 Type K soft temper tubing for up to 1.5 inch tubing and Type K hard temper for greater than 2 inch and up to 4 inch tubing. All copper connections shall be silfoss.
 All fittings, including push on, mechanical joint, flanged, and restrained joint, shall be gray iron, ductile iron, or compact ductile iron fittings.
Flanged Coupling Adapters and Flexible Couplings - Flanged coupling adapters (FCA), Romac Style FCA501 or equal. and flexible couplings, Romac Style 501 or equal shall conform to the AWWA Standard C219.
Valves -
 Greater than 12”, provide Class 150B Butterfly valves, Pratt Groundhog Buried Service, Mueller Linesel III, or equal. Valves shall be flanged or mechanical joint type and shall be
of the rubber seat type. Valve discs shall rotate 90 degrees from the full open position to the
tight shut position. The valve seat shall provide a tight shutoff at a pressure differential of
150 p.s.i. upstream and 0 p.s.i. downstream in either direction. The valve operator shall be
the traveling nut type. Valve shall open with a counter-clockwise rotation of the 2 inch
operating nut, and have o-ring seals.

2 inch through 12 inch. Gate valves, American Flow Control Series 2500, Mueller 2360 Series,
or equal shall be resilient seat, with non-rising stem opening counter-clockwise with O-ring
stem seal and suitable ends for connection to the type of pipe or fitting used. The working
pressure rating of gate valves shall be a minimum of 250 p.s.i.g. Buried valves shall have a 2
inch square operating nut. The interior and exterior of the body and bonnet shall be coated
with fusion bonded epoxy. The body to bonnet bolts and nuts shall be stainless steel.

Less than 2 inch, bronze gate valves, Stockham Model B103/B104, Nibco Model T-113/S-113,
or equal with non rising stem, class 125 minimum.

Valve boxes, meter boxes and vaults -
Precast concrete with cast iron traffic covers with the word WATER embossed on the top
surface of the lid (Christy G5 or equal). Cover shall be painted light blue (ICI Devoe DC41000
semi gloss) for domestic water valves and white (ICI Devoe, DevFlex-659 White Semi Gloss
4206) for Utility water valves. For chilled water valves, the letters “CHW” shall be welded or
embossed on the top surface of the lid and the cover shall be painted green. For all valves
an identification number shall be welded onto valve box rim. Identification number shall be
assigned by Operations and Maintenance, Engineering Services.

Meter boxes and vaults shall be precast concrete. Meter boxes and vaults shall be set so that
the reading lids are aligned over the meter registers as closely as possible. Boxes or vaults
located in natural areas shall have a steel or cast iron lid. Boxes and vaults located in traffic
areas shall have lid appropriate for expected loading.

Hot Taps - Hot taps are only allowed for hydrant laterals or when main line isolation is not
required. Size-on-size hot taps are not permitted on asbestos cement pipe; the tap must be a
minimum of one size smaller. Tapping sleeves shall be stainless steel full circle with stainless
steel flange.

Rods and clamps - Socket clamps shall be stainless steel, four bolt type, equipped with stainless
steel socket clamp washers and nuts. Rods shall be stainless steel, 3/4-inch diameter.

Backflow protection - All water service connections to the domestic water system shall include
backflow prevention devices. Backflow prevention devices shall be from and installed in
accordance with the University of Southern California – Foundation for Cross-Connection
Control and Hydraulic Research (USC-FCCCHR) list. An insulated, lockable, blanket type cover
shall be provided for all reduced pressure principle devices less than 8 inches and all double
check devices less than 8 inches. All devices that are ferrous metal shall be painted.
Domestic devices shall be painted Hunter Green Semi-Gloss and fire service shall be painted
For reduced pressure principle devices:
- 3/4 inch to 2 inch - Febco 825Y or 825YA or equivalent Ames or Watts product.
- 2.5 inch to 10 inch – Febco 860 or 880/880V or equivalent Ames or Watts product.

For double check devices:
- 3/4 inch to 2 inch - Febco 850 MasterSeries or equivalent Ames or Watts product.
- 2.5 inch to 10 inch –Febco 850 or 870V or equivalent Ames or Watts product.

EXECUTION
Large or critical use facilities require dual service connections. Services should be fed from independent water mains so that that the likelihood of a building shutdown due to water main break is minimized. All domestic services shall have a valve immediately ahead of the water meter location. Each structure shall have a dedicated service connection and each service connection shall be metered. Minimum service size is 1 inch. Service connections shall be:

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Hot tap permitted</th>
<th>At the main line connection point</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 inch</td>
<td>Yes</td>
<td>Corporation stop on service line</td>
</tr>
<tr>
<td>2 inch</td>
<td>Yes</td>
<td>Gate valve on service line</td>
</tr>
<tr>
<td>>2 inch</td>
<td>No*</td>
<td>Three valve tee*</td>
</tr>
</tbody>
</table>

* If main line isolation valves are already present nearby, the University's Representative may allow service to be installed with a hot tap with a valve on service line.

Three valve tees shall have two valves on the main and one on the connection; see standard drawing 851. Flexible connections shall be used when connecting to asbestos cement pipe.

The domestic water service to the building or facility shall include reduced pressure principal backflow prevention device(s) installed outside and above ground. The device shall be installed downstream of the domestic water meter (between the facility and the meter). All service line installations 3 inch and larger shall have parallel devices to facilitate testing without a shutdown of the building. Any facility that cannot be shutdown due to operational constraints requires parallel devices regardless of service size.

Irrigation services shall be connected to the utility water system. If the irrigation service must be connected to the domestic water system (e.g., for areas not serviced by utility water), it shall include reduced pressure principal backflow prevention device(s) installed outside and above ground.

Domestic water pipes shall be sized according to the UC Davis Domestic Water Master Plan.

All tees require three valves and crosses require four valves. A valve may not be required on any leg of a tee or cross if another valve is within 150 feet. Generally, there should be a maximum of 500 feet of water main between isolation valves in the core campus and 1500 feet in rural areas.

All high points require combination air/vacuum release valve.

Utility corridors - All water lines greater than 3 inches shall be installed in existing utility corridors or a newly created utility corridor. A corridor is defined as an easement dedicated to the utilities installed. The utility easement shall be a minimum of 10 feet wide and be accessible.
by a backhoe. Water lines shall be aligned to remain outside of the future drip line of all existing and planned trees.

Asbestos cement pipe - All cutting, handling and disposal of asbestos cement pipe shall be done in compliance with all applicable laws and regulations. To prevent settlement and damage to existing AC pipe, any excavations below AC pipe shall require:
1. Removal of a section of AC pipe and replacement with new, see UCD Standard Drawing 888, or
2. Cement slurry backfill against undisturbed soil to support AC pipe (maximum of 2 feet depth of slurry backfill allowed).

Minimum Cover is the distance from the top of the pipe to final finished grade measured directly over the pipe. For mains, branch and service connections, the minimum cover is:
- 36 inches for pipe sizes up to 8 inches
- 40 inches for 10 inch pipe
- 44 inches for 12 inch pipe
- 48 inches for pipe sizes 16 inches and larger

Where cover is less than standard or greater than 7 feet, written approval from the University’s Representative is required. Where cover is less than the standard, ductile iron pipe is required.

Flame cutting of pipe by means of oxyacetylene torch is not allowed.

Mechanical restraints - Provide number of restraints and pipe length per manufacturer’s table at changes in pipe direction, changes in pipe sizes, dead end stops and at valves. New installations shall use restrained joint fittings. Thrust blocks should only be used if connecting to existing unrestrained pipe or fittings and be explicitly shown on the plans, including location and thrust block size. Thrust blocks shall conform to UC Davis Standard drawing 854 and be the minimum size necessary to provide restraint. Provisions shall be made to insure that pipe joints, fittings and valves are not covered by the thrust block concrete.

Separation from other utilities - For utilities not covered by State Health Standards, separation between water lines and other utilities, such as pipes, vaults, and manholes, shall never be less than 1 ft. For parallel PVC water and steam pipes, there must be minimum 10 ft separation. For perpendicular crossings, there must be a minimum 5 ft distance between any PVC materials and the stream line. If the separation is less than these values, the pipe must be ductile iron or copper. Separation shall never be less than 1 ft.

Hydrostatic testing - All pipes shall be tested according to AWWA C605, Section 7.3 for PVC Pipe and AWWA C600, Section 5.2 for Ductile Iron Pipe, including leakage limits, with the following changes: 1) the test shall be performed after the pipes and accessories have been installed and all backfill placed and compacted. The Contractor, at their option, may test the pipe at any time during construction. However, the final test for acceptance shall be made only after all backfill is in place, 2) hydrostatic test pressure of not less 50 psi above working pressure and not less than 150 psi at any point on the pipe. Test shall be witnessed by the
University representative, documented by the contractor, and written results provided to the University Representative. The Contractor shall repair any obvious leaks even though the hydrostatic test results are within the prescribed limits.

Cleaning - All domestic water pipes shall be cleaned, filled, flushed and disinfected per Section 33 13 00 Disinfection of Water Utility Distribution Systems.

FIRE SUPPRESSION WATER DISTRIBUTION PIPING

All design, work and materials described herein shall be approved by the State Fire Marshal (SFM) as represented by the University Fire Department Designated Campus Fire Marshal (UCDFD/DCFM). For work beyond the connection to the water main and above the blank flange at the bottom of the building riser, see Site Water Line and Fire Suppression sections.

All work shall be designed in accordance with the requirements of the UCDFD/DCFM, the applicable editions of National Fire Protection Association (NFPA) 13 (1999) and 24 (1995), and the appropriate editions of the California Building code and the California Fire Code. Coordinate the approval of the UCDFD/DCFM and the University’s Representative. Coordinate the electrical conduit installation for supervisory systems.

SUBMITTALS

Underground fire protection system shop drawings shall show all information required by NFPA 24. In addition, the shop drawings shall show the Soil Bearing Capacity of the soil (see Soils Report) and the location, design, and size of mechanical restraints.

MATERIALS

All material shall be currently listed in the Underwriters Laboratories, Inc., Fire Protection Equipment List and/or the Factory Mutual Approval Guide for use as intended in underground fire line installations and shall be acceptable to the UCDFD/DCFM. Material pending approval shall not be acceptable. See Section 13900 Fire Suppression for information on valves and additional requirements.

Vertical piping, piping installed within 5 feet of the building and piping under all footings and slabs shall be cast or ductile iron.

Drain piping that is installed underground shall be PVC or galvanized pipe, wrapped to protect against corrosion.

Uniflanges shall not be used on vertical piping, above ground, or in the basement. Tops of vertical risers shall be rodded down to the 90 degree bend at the base of the riser. Horizontal risers shall be rodded back to deadman of sufficient size to secure the flanged fitting.
Fire Hydrants: Clow Corporation Model #92 (no known equal). Clow Model #76 or Long Beach Iron Works, Inc. Model #651, “The Logan” may be substituted with written approval from the University Fire Department. Hydrants shall be wet barrel type.

1. Install with the outlets facing the street and meeting the other requirements shown on the diagram shown below.

2. The University shall paint the hydrant in accordance with National Fire Protection Association (NFPA) 24, edition 1995 requirements.

3. Where subject to mechanical injury, protect hydrants as approved by University Fire Department so as not to interfere with connection to the outlets.

Post Indicator Valve: All post indicator valve installations shall be approved by the University Fire Department. The post indicator valve (PIV) shall be located not more than 40 feet from the building. Where conditions do not permit, the post indicator valve shall be placed where it will be readily accessible in case of fire and not liable to injury. Location of the PIV shall comply with aesthetic needs of the University and shall require specific site approval. Maintain a three-foot clear radius around the PIV as specified for the fire department connection.

Backflow Prevention Device and Fire Department Connection: A backflow prevention assembly and Fire Department Connection (FDC) is required on all fire lines.

1. Locate the backflow prevention device outside of the building in an accessible location mounted on a minimum 6-inch height concrete slab so that it remains clear of adjacent vegetation. Insulate the aboveground piping 6 inches and smaller with removable blanket insulation (fiberglass insulation is not acceptable).

2. Backflow protection devices shall be UL listed.

3. Where subject to mechanical injury, protection shall be provided. The means of approved protection shall be arranged in a manner, which will not interfere with the connection to inlets.
4. Fire department connections shall be located not less than 40 feet from the buildings and properly protected. The fire department connection shall be clearly visible from the street. The fire department connection shall front the street of primary fire department vehicular access and shall be located within 25 feet of a fire hydrant. Fire department connection inlets shall be located 30 to 36 inches above grade on street front and as measured at all inlets within a three-foot radius. Note: Where conditions do not permit, the fire department connection shall be placed where it will be readily accessible in case of fire and not liable to injury. All fire department connection locations shall be approved by the University Fire Department.

 a) Systems with a flow demand of 500 gpm or less: Provide four-inch pipe mount by 2-1/2 (siamese), brass, dual clapper, freestanding fire department inlet connections, one-inch cast lettering, brass finish with plugs and chains or sensible caps.

 b) Systems with a flow demand greater than 500 gpm: Provide six-inch pipe mount by 2-1/2 inch, 4-way, brass, four clapper freestanding fire department inlet corrections, one-inch cast lettering, brass finish. Inlet corrections shall be oriented in a quad arrangement.
5. Maintain a 5-foot clear radius around the fire department connection. Grade variation within this radius shall not exceed 1:12. The fire department connection shall be arranged so that hose lines can be ready and conveniently attached to inlets without interference from any nearby objects including buildings, fences, posts, or other fire department connections.

6. Underground piping serving the fire department connections shall be wet pipe under system pressure with check valve at each fire department connection.

7. Paint the FDC with 2 coats of reflective paint (bright white with a minimum visual light reflectance value of 90%) and provide a building identification sign from the Campus Sign Shop. Provide a UCDFD-approved pictogram if more information is needed beyond the building name.

INSTALLATION
Piping shall be installed as per the requirements of this Division and in a manner acceptable to the UCDFD/DCFM and the University’s Representative. Give special attention to materials and coatings.

Provide mechanical restraints. Thrust blocks will not be permitted except for Fire Hydrants. Depth of bury for piping shall be a minimum of 36 inches under vehicular paving. Measurement is from the top of the pipe to grade.

When the system riser is close to a foundation or footing, underground fittings of proper length shall be used to avoid pipe joints located in or under the wall or footing. When the connection passes through a foundation or footing below grade, a 1 to 2 inch clearance shall be provided around the pipe, and the clear space filled with asphalt mastic or similar flexible waterproofing material.

INSPECTION & TESTING
Inspections are required by the UCDFD/DCFM and University’s Representative. An inspection of underground installation, backflush, and hydrostatic test shall be conducted by the Contractor and witnessed by a representative of the UCDFD/DCFM prior to backfill. Disinfect line from point of connection to Building Fire Protection as per Section 33 13 00 Disinfection of Water Distribution Systems.

All piping shall be hydrostatic-pressure tested in accordance with these standards, and NFPA 24-1995 edition. Underground piping shall be center-loaded and all fittings, joints, strapping, and thrust blocking shall be exposed for hydrostatic pressure testing and inspection per NFPA 24.

Contractor shall prepare and complete NFPA 24 inspection and installation certificates prior to acceptance testing and have them signed off by the UCDFD/DCFM and the University’s Representative immediately after acceptance testing and approval.
Pipes and Fittings -
1. Gravity sewer mains up to and including 12 inches and sewer service laterals shall be Polyvinyl chloride SDR 35 or Ductile Iron Pipe (DIP).
2. Fittings: PVC, elastomeric joints using elastomeric seals or Ductile Iron Pipe (DIP).
3. Where sewer piping is located parallel and less than 10 feet from steam lines or less than 5 feet when crossing steam piping, provide DIP.
4. Materials for pipes installed deeper than 15 feet will be approved by the University’s Representative.

Sewer Mains -
1. The minimum main size is 6 inches.
2. Sewer systems will be designed in streets, service roads or pathways whenever possible. When not in streets or service roads, the following conditions must be met:
 a) Manholes and rodding inlets must be located in areas with all weather access for service vehicles and equipment.
 b) Manholes and rodding inlets must be located in areas that are not subject to flooding or standing water.
 c) Manholes and rodding inlets must be located in areas that will not be obstructed by landscaping or other structures or facilities.
3. Minimum cover over pipe shall be 3 feet from top of pipe to finished grade. Use ductile iron pipe when less than minimum cover. Concrete encasement with 1 sack sand slurry may be allowed as an alternate on a case by case basis.
4. The maximum depth of any sewer line shall be 15 feet.
5. Maintain minimum velocity of 2 FPS. Special attention should be given to maintaining adequate velocities at low flows. The preferred minimum slope for gravity sewers is 0.005. When conditions require, flatter slopes may be approved in accordance with the following:

<table>
<thead>
<tr>
<th>Sewer Diameter, Inches</th>
<th>Minimum Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.50%</td>
</tr>
<tr>
<td>8</td>
<td>0.35%</td>
</tr>
<tr>
<td>10</td>
<td>0.25%</td>
</tr>
<tr>
<td>12</td>
<td>0.20%</td>
</tr>
<tr>
<td>15</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

6. Slopes through manholes
 a) When sewers of uniform slope pass through a manhole, the slope will be maintained and the invert at the center of the manhole will be given.
 b) When sewers change slope at a manhole, incoming and outgoing invert elevations will be given.
c) Provide sufficient drop through a manhole to compensate for energy loss caused by change of alignment. A minimum drop of 0.1 foot is required for a change of alignment greater than 30 degrees.

d) When pipe sizes change at structures, design the inlet crown at least as high as the outlet crown.

Connection to Existing Campus Sewer Main -
1. Connect new mains to existing at existing manholes or by constructing a new manhole over the point of connection.
2. Where an existing sewer main is to be extended, remove the existing plug, cleanout, or rodding inlet and install a manhole. The main may be extended without installation of a structure only if it is on the same line and grade, the pipe size and material are the same and the manhole spacing is adequate.
3. Elevations of mains connecting to existing sewer mains will be as follows:
 a) Side sewer mains connecting to an existing main at an angle of 30 degrees or greater will be at least 0.1 foot higher than the existing.
 b) Connect sewer mains so that the crown of the smaller main is no lower than the crown of the larger main.
 c) Connections to Trunk Sewers will be made so that the invert grade of the new main will be no lower than the crown of the Trunk sewer.
4. Where laterals are the same size as the main, connection must be made with a manhole. Use a wye for all other lateral connections except as in “5” below.
5. For lateral connections to existing mains 12 inches and larger, use taps and saddles per UC Davis Standard 513.

Inverted Siphons -
1. Inverted siphons shall be used only upon special approval after all other design options have been investigated.
2. The siphon shall be designed with two barrels, with a gate system directing the flow towards either the primary or secondary barrel.
3. Design to achieve a minimum velocity of 3 FPS maintained for several hours a day.
4. Vertical curves shall be used for all change in slope (100 feet minimum).
5. The rising slope of the downstream leg of the siphon shall be limited to 15%.

Sewer Force Mains -
1. Sewer force mains will conform to the Water Construction Standards for water mains.
2. Sewer force mains will be laid with a constant slope toward the pump station to allow for complete draining of the pipeline.
3. Locator boxes will be placed at every horizontal change in alignment or a maximum of every 500 feet.
4. Boxes will conform to valve box requirements per UCD Standard Detail 877 with the lids clearly marked, “SEWER.”

Alignment -
1. Horizontal and vertical separation from Domestic Water lines must conform to the State of California, Department of Health Services, “Criteria for the Separation of Water and Sanitary Sewer.”

2. In general, design sewer mains in straight street sections to run parallel to the street centerline. All mains must be a minimum five feet clear from all buildings, building overhangs, etc.

3. In curved streets, design the sewer alignment generally on one side of the centerline to allow installation of other facilities such as water, storm drains, etc. without using transverse crossings. Provide an alignment such that no part of the sewer main is less than 1 foot from the lip of gutter.

4. Vertical curves or bend fittings in gravity sewer mains are not allowed.

Laterals -
1. Provide a separate lateral and cleanout for each building and structure.

3. Cleanouts: Pipe extension to grade with compression type plug. Install curb box over riser pipe. Use precast concrete box Christy F8 with cast iron lid or approved equal in non-traffic areas and Christy G5 with cast iron lid or approved equal in traffic areas. Lids shall be marked “SEWER”.

4. Lateral cleanouts shall be installed within 10 feet of the structure.

5. Sewer laterals serving buildings or facilities which have plumbing fixtures with flood level rim elevations located below the next upstream sewer manhole rim require an approved backwater valve. Fixtures above such elevation shall not discharge through the backwater valve per UPC Section 409. Backwater valves shall be installed in a vault, pit or basement so the valve is easily accessible for maintenance. A cleanout must be installed within 5 feet downstream of the valve.

Sanitary Sewer Manholes and Rodding Inlets -
1. A manhole is required at every horizontal or vertical change in alignment.

2. Maximum distance between manholes is 300 feet.

3. A manhole is required at the end of every main in excess of 200 feet in length. Rodding inlets may be installed in lieu of manholes at the end of a sewer main where the distance is less than 200 feet to the nearest manhole and the main size is 10 inches or less.

4. Manholes shall be constructed with eccentric cones.

5. 60 inch diameter manholes are required for mains 18 inches or larger in diameter.

6. The manhole will be designed such that the angle in the horizontal plain between the downstream and any incoming sewer is a minimum of 90 degrees.

7. Stubs provided out of manholes for future extension will have rodding inlets provided when more than 20 feet of pipe is installed or where service laterals are connected to the stub.

8. Standard drop manhole installations are required when the difference in elevation between the incoming and outgoing sewer is greater than 2 feet. While not encouraged, drop manholes may be required because of some physical restraints. They may not however, be used to merely avoid extra depth of trenching unless unusual circumstances exist. Upstream slope changes should be used to avoid the need for a drop manhole.
9. When one drop connection is required, use a 60 inches diameter manhole. When two or more drop connections are required, use a 72 inches diameter manhole.

Industrial Waste Discharges -
1. Grease traps, grease and sand traps, grease interceptors, and sampling structures as may be required by the University shall be shown on the plans submitted for approval, and comply with the appropriate Sewer Standard Plans.
2. Food Service facilities must have a grease interceptor installed outside the facility in an area accessible for service vehicles.
3. Trash enclosures and other outdoor pad areas used for washing will be plumbed to the sanitary sewer system at grease interceptor or other connection point approved by Environmental Health & Safety and the Utilities Director. Preventive measures must be taken to eliminate the intrusion of any rainwater or surface runoff.
4. Wash pad areas must be diked and/or sloped so that the smallest area possible drains to the sewer.
5. A fixed roof must be installed over the wash area. The Utilities Director may consider alternatives to a roof where it is not feasible.

LIFT STATIONS
1. Lift stations will not be allowed where an acceptable alternative gravity route exists.
2. Design the lift station to serve the entire tributary at build-out densities in accordance with sewer system master plan, LRDP and I/I allowances.
3. All pumps, regardless of station type, will be non-clogging, capable of passing a minimum 3 inches diameter sphere.
4. Lift stations are not allowed within the street.
5. Provide a 12-foot paved access road to allow service vehicles to be parked off the street and clear of the sidewalks. Turnarounds are required for stations constructed along heavily traveled streets. Provide service vehicle access to wet well.
6. Provide a reinforced concrete base slab sized adequately to counteract buoyancy. Provide supporting design calculations.
7. Provide a single surface pad over site that incorporates lift station access, wet well access and supporting generator and fuel supply tanks, as necessary.
8. Provide restrained flexible couplings on all outlet piping within 2 feet of the station wall.
9. All wet well components and all items in the wet well shall be non-corrosive plastic, stainless steel or other approved material.
10. Wet well to be minimum 72 inches in diameter with 4-hour capacity or as necessary to accommodate pumping equipment for submersible stations. Provide resilient-seat gate valve on inlet pipeline into wet well to provide wet well isolation.
11. Odor control systems shall be required.
12. Provide 6 inch PVC emergency by-pass system consisting of a suction line and a discharge line and a standpipe equipped with a cap and cam-lock connector. Bypass will be located in a vault. Standpipe connects to force main through an AWWA resilient-seat-gate valve with stainless steel trim and a check valve. The suction and discharge lines will have gate valves for isolation. Adequately support all piping.
13. Provide 1-inch minimum water service with reduced pressure backflow preventor and piping insulation.
14. Provide a minimum of two pumps and controls to alternate lead and lag pumping.
16. Provide hour meters for each pump that records pump run time, only if the motor is operating.
17. Provide a magnetic flow meter on the discharge of the pump station. Meters may be in an approved vault. Display will be installed in pump station control panel.
18. All pumps, motors, internal valves and piping, level indicators, control panel, will be assembled as a package. Supply and warranty will be through one company.

Submersible pumping stations -
1. The lift station will consist of a minimum of two submersible centrifugal sewage pumps, guide rails, wet well access, discharge seal and elbow, motor control center, starters, liquid level control system and all hardware necessary to make a complete working system. Supply and warranty will be through a single company. Standards are ITT Flygt, Gorman Rupp Company or equal.
2. The pumps will be electric, submersible, centrifugal non-clogging units capable of passing a 3-inch sphere. Pump and motor will be suitable for continuous operation at full name plate load while the motor is completely submerged, partially submerged or not submerged. All electrical equipment/panels will be above ground.
3. Each pump will be furnished with a discharge connection system, which will permit removal and installation of pump without the need for the operator to enter the wet well.
4. All hardware in wet well, chains, cables and slide rails will be 316 stainless steel.

Lift station piping and valving -
1. When not included with package stations, all internal main lift station piping will be flanged or victaulic to allow for disassembly.
2. All main piping will have manual vents and drains to allow draining of sewage prior to piping disassembly.
3. Resilient-seat-gate valves will be used in station discharge piping. If space does not permit isolation valves for each pump use 3-way valves.
4. Main Pump Check Valves will be cast iron swing checks with externally weighted lever return. Check valve will not be installed in the vertical. Disc will be 316 stainless steel or cast iron with bronze trim. Pivot arm and bearing will be 316 stainless steel or cast iron with bronze trim. Pivot arm and bearing will be 316 stainless steel or bronze. Seat will be field replaceable with neoprene facing.
 a) Electrical Equipment
 1. Free standing electrical service with transfer switch, with heavy duty electrical weatherproof enclosure securely mounted in a manner acceptable to the Director of Utilities, a minimum of 24” above the ground. Provide generator receptacle to match Utility Division standard or stand-by generator. Provide a concrete pad around steel supports.
 2. All pump motors will have solid state soft starters. They will be Allen-Bradley or approved equal and provided with solid state smart type motor starters with a
pump control option used to provide ramp starting and stopping of motors. The controller will have the following start modes: soft start with selectable kick starts, current limit and full voltage.

3. Interior Lighting: Provide all control panels with a fluorescent interior light of the same approximate width of the control panel located along the top of the panel. Provide light with a separate light switch.

4. UPS: Provide an uninterruptible power supply sized for 150% of calculated load with sufficient battery backup time for 30 minutes of operation. Provide American Power Conversion, Best Power Products or equal.

5. Selectors and Pushbuttons: Provide corrosion resistant 30mm selectors and pushbuttons by Allen-Bradley or Square-D.

6. Sewer lift station electrical controls must comply with standards as established by the University's Representative to ensure compatibility with existing control and SCADA systems.

CLEANING
1. For piping greater than 6 inches and any main piping, clean pipe to be tested by propelling a snug fitting inflated rubber ball through the pipe with water to remove any debris.
2. For piping 6 inches and smaller, flush piping applying full size pipe flushing.

TESTING
Leak Testing -
1. Testing of all portions of the sewer including manholes is required.
2. For either exfiltration or infiltration test, the maximum leakage shall not exceed 250 gallons per inch of pipe diameter per mile per 24 hours as measured over a period of 30 minutes minimum. Should the leakage exceed the maximum allowable rate, the contractor shall repair, overhaul, or rebuild the defective portion of the sewer line. After repairs have been completed by the Contractor, the line shall be retested as specified above.
3. Manholes shall be filled with water to the rim of the frame casting and shall lose no more than 2 inches over a period of 30 minutes.
4. The final test shall be performed after the line has been laid and all backfill placed and compacted. The Contractor, at his option, may test the line at any time during construction. However, the final test for acceptance shall be made only after all backfill is in place and compacted. In the event that the exfiltration test prescribed above is impractical due to wet trench conditions, these portions of the sewer line where such conditions are encountered will be tested for infiltration. The University's Representative shall determine whether the exfiltration or infiltration test will be used.
5. Even though the test for leakage is within the prescribed limits, the Contractor shall repair any obvious leaks.
6. Low pressure air testing may be used in lieu of water testing at the option of the Contractor. Water testing may be required by the University's Representative. The following procedure shall be used for air testing:
Plug all pipe outlets with suitable test plugs. Brace each plug securely.
If the pipe to be tested is submerged in ground water, insert a pipe probe, by boring or jetting, into the backfill material adjacent to the center of the pipe, and determine the pressure in the probe when air passes slowly through it. This is the back pressure due to ground water submergence over the end of the probe. All gauge pressures in the test should be increased by this amount.
Add air slowly to the portion of the pipe installation under test until the internal pressure is raised to 5.0 psig.
Check exposed pipe and plugs for abnormal leakage by coating with a soap solution.
If any leakage is observed, bleed off air and make necessary repairs.
After an internal pressure of 5.0 psig. is obtained, allow at least two minutes for air temperature to stabilize, adding only the amount of air required to maintain pressure.
After the two minute period, disconnect the air supply and start stopwatch. The pressure of 5.0 psig. shall be maintained for 5 minutes.
As an alternate, the contractor may request the air testing procedure as presented in Section 306-1.4.4 of the 1997 edition of the “Greenbook” Standard Specifications.

Deflection Testing - (Applicable to piping greater than 8 inches if serving as major main sewer piping). Consult University's Representative before applying this requirement.
1. After pipe installation and placement and compaction of backfill, but prior to placement of pavement, all PVC pipe shall be cleaned and then mandrel tested for obstructions, such as, but not limited to, deflections, joint offsets and lateral pipe intrusions. A rigid mandrel, conforming to University Standard 518 shall be pulled through the pipe by hand. The minimum length of the circular portion of the mandrel shall be equal to the nominal diameter of the pipe. All obstructions encountered by the mandrel shall be corrected by the Contractor. Obstructions due to deflection shall be corrected by replacement of the overdeflected pipe. Mechanical re-rounding is not permitted.
2. If a section of pipe fails to meet the mandrel test and is reinstalled and fails the second time, said section(s) of pipe shall be replaced with rigid pipe material approved by the University's Representative.

Television Inspection (If needed for a special application only). Consult University before applying this requirement.
1. The Contractor shall hire an independent television inspection service to perform a closed-circuit television inspection of all newly constructed sewers including laterals from the main to the cleanout. A video tape of the television inspection shall be produced and delivered to the University's Representative in color VHS format or Digital Video Disk (DVD), together with a typed log of the inspection. The following conditions shall exist prior to the television inspection:
a) All sewer lines shall be in installed, backfilled and compacted;
b) All structures shall be in place, all channeling complete and all pipelines accessible from structures;
c) All other underground facilities, utility piping and conduit within two feet of the sewer main, shall be installed;
d) All compaction required shall be completed;
e) Pipelines to be inspected shall be balled, flushed and mandrel tested;
f) The final air or water test shall have been completed.
g) Immediately before the television inspection, run fresh water into the sewer until it passes through the downstream manhole.

2. When the above work has been completed, the Contractor shall notify the University's Representative 48 hours in advance of the date for television inspection. During this inspection, the Contractor or his authorized representative shall be present to observe the video pictures as provided by the television camera.

3. The following video tape observations shall be considered defects in the construction of the sewer pipelines and will require corrections prior to acceptance:
 a) Off grade - 0.08 foot, or over, deviation from grade;
 b) Separations over 2" in pipe joints using couplers;
 c) Joint separations over 3/4";
 d) Offset joints;
 e) Chips in pipe ends - none more than 1/4" deep;
 f) Cracked or damaged pipe or evidence of the presence of an external object bearing upon the pipe (rocks, roots, etc.);
 g) Infiltration;
 h) Debris or other foreign objects;
 i) Other obvious deficiencies when compared to the Contract Documents.

4. The contractor shall be notified in writing of any deficiencies revealed by the television inspection that will require repair, following which the Contractor shall excavate and make the necessary repairs and request a television re-inspection. Television re-inspection shall be at the contractor's expense.

STORM DRAINAGE UTILITIES 33 40 00

Size system to accommodate a minimum of a 10 year storm event. Comply with the requirements of the following parts of Section 33 30 00 Sanitary Sewerage Utilities except as modified below. Replace the word “sewer” with “storm” as appropriate.

Pipes and Fittings - Requirements 1-4.

5. Corrugated High Density Polyethylene Pipe (CPEP), Type S (smooth interior) may be used in storm drain systems.

Sewer Mains - Requirements 1-6, except line 2. b.

Connection to Existing Campus Sewer Main - Requirements 1-3 and add new requirements.

4. Provide a manhole at building main lateral connection to the Campus storm main.
5. For pipe penetrations through existing and new manholes, core through, install gasket around pipe, grout penetration on both sides and install a minimum of 6 inches around collar outside of the manhole penetration.

6. Tap Connection - Use commercially manufactured wyes for branch connections. Field cutting into piping will not be permitted. Spring wyes into existing line and encase entire wye, plus 6 inches overlap, with not less than 6 inches of 3000 psi 28-day compressive strength concrete.

For branch connections from side into existing 24 inch or larger piping, or to underground structures, cut opening into unit sufficiently large to allow 3 inches of concrete to be packed around entering connection. Cut ends of connection passing through pipe or structure wall to conform to shape of and be flush with inside wall, unless otherwise indicated. On outside of pipe structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support or collar from connection to undisturbed ground. Use epoxy bonding compound as interface between new and existing concrete and piping materials.

Take care while making tap connections to prevent concrete or debris from entering existing piping or structure. Remove debris, concrete, or other extraneous material, which may accumulate.

Sewer Force Mains - Requirements 1, 3 and 4.

Alignment - Requirements 2-4

Laterals - Requirements 1- 3 and add a new requirement.

4. Building storm systems that can be connected to the campus main by gravity shall not use a new or existing lift station.

Sanitary Sewer Manholes and Rodding Inlets - All requirements.

LIFT STATIONS – All requirements.

NATURAL GAS DISTRIBUTION

METERING

The natural gas meter shall be installed at service connection to the building in an accessible location. Meter shall be capable of local and remote read-out. See Division 22 for more information.

STEEL PIPE

Pipe - black steel, Schedule 40 with X-Trucoat, Greenline, or equal, factory wrap on buried lines.
Fittings - Buried: Steel butt-welding or socket welding type
Above Ground: Welding, or malleable iron threaded.

Valves -
1. Underground: Valves under three inches shall be threaded and made up with threaded nipples, in a vise, before inserting into the line by welding. Valves three inches and larger shall be generally flanged and attached to slip-on welding flanges.
2. Lubricated plug cock: 1 inch and larger, Rockwell 115, Walworth, or equal. Provide lubricated plug cock for all below grade applications. Extend lubrication port and valve handle to a minimum of 6 inches below grade in valve box.
3. Corporation stops of dissimilar metal shall not be used.

Unions -
1. Underground: Unions shall not be used.
2. Above ground: Flanged or threaded metal-to-metal shall be used.
3. Dielectric (insulated) unions shall be installed at designated points for cathodic protection.
4. Regulators and meters shall be protected from damage.

Corrosion Control - In order to provide protection of metal pipe from external, internal and atmospheric corrosion, provide an external protective coating and a cathodic protection system designed to protect the pipeline in its entirety.
1. Field Wrapping with cold-applied tape
 a. Field joints shall use “Protectowrap” #200 with 1170 primer or equal. When coating odd shapes containing bolts, voids, or hard-to-wrap surfaces, two coats of mastic-type primer shall be used instead of the above primer, with special care to assure that all surfaces are coated without introducing voids or pockets.
 b. The bare metal surface to be wrapped must be dry and cleaned of rust, dirt, oil, and weld slag.
 c. Whenever tape wrap is applied over yard wrap, the outer coating of Kraft paper, whitewash, mica, flakes, protective plastic outer wrap, etc., shall be removed.
 d. Plastic coated pipe, prime area to be wrapped plus a minimum length of 4 inches from the cutback edge.
 e. Tape shall be applied by first lapping over approximately one tape width of the prepared end of the wrap. The wrap should be spiraled along the line, with each spiral overlapping the previous spiral by one-half the tape width plus one-quarter inch, to assure a double thickness at all points. The tape should be applied with enough tension to achieve a tightly bonded smooth wrap, free of wrinkles or voids. Do not over-stretch.
2. Asphalt Coating: Small defects (less than 3 inches across) - slight damage where the asphalt wrap is still bonded to the pipe and no penetration has occurred may be repaired by a single patch. Prepare the surface of the asphalt wrap by removing the outside coating with a wire brush, prime and apply the single layer of tape so that it extends 2 inches beyond the damaged area in all directions. If penetration of the asphalt wrap has
occurred or the bond has been broken, all loose wrapping shall be removed to the bare pipe. The area shall be primed and the standard spiral wrap applied. Large defects (greater than 3 inches across) - if the pipe coating is still bonded and penetration has not occurred, prepare the surface by removing the outside coating with a wire brush, prime, and wrap tape completely around pipe, extended two inches beyond the damaged area on each side. If penetration of the coating has occurred or the bond has been broken, all loose or damaged coating shall be removed. Prime and apply the first layer of tape, patch fashion, the next layer use the standard spiral wrap, extending 2 inches beyond the damaged area.

3. Plastic or Tape Coating: On plastic-coated pipe, repairs shall be treated as a large defect by wrapping completely around the pipe as required. The entire plastic surface to be coated shall be cleaned. On tape-coated pipe, repairs shall be done by removing the outer wrap several inches back from the area of defect, then prime and apply tape to the damaged area. It is not necessary to remove the inner wrap.

Inspection of Materials - Each length of pipe and each other component must be visually inspected at the site to ensure it has not sustained any visual damage, and the pipe shall be inspected for holidays, using an approved holiday tester, prior to installation in trench. Coordinate test with University’s Representative for witnessing. At least 48 hrs. notice shall be given. Lacerations of the protective coating shall be carefully examined prior to the repair of the coating to see if the pipe surface has been damaged. All repairs, replacements, or changes shall be inspected before they are covered up.

Qualification of Welders - Only welders who are currently qualified in accordance with the following may perform welds on gas pipeline:

1. Section IX of the American Society of Mechanical Engineers Association (ASME) Boiler and Pressure Vessel Code.
2. Section 3 of American Petroleum Institute (API) Standard 1104

Inspection of Welds -
1. Inspect at sufficient frequent intervals to assure good quality workmanship.
2. Inspect the fit-up of a joint before the weld is made.
3. Visually inspect the stringerbead before subsequent beads are applied.
4. Inspect the complete weld before coating.

Inspections or Trench and Pipe Coating -
1. The condition of the ditch bottom should be inspected just before the pipe is lowered in.
2. The surface of the coated pipe shall be inspected as the pipe is lowered into the ditch. When long sections of pipe that have been welded are lowered in, care should be taken to avoid jerking or imposing any strains that might kink or put a permanent bend in the pipe.
Underground Clearance - Sufficient clearance shall be maintained between mains and other underground structures to:

1. Permit installation and operation of maintenance and emergency control devices such as leak clamps.
2. Permit installation of service laterals to both the mains and to other underground structures.
3. Provide heat damage protection from other underground facilities such as steam or electric power lines. This is especially critical for cathodically protected pipeline, which must be isolated from underground foreign piping.

PLASTIC PIPE

No plastic natural gas lines will be accepted on UC Davis central campus without approval of University's Representative.

Service lines (plastic)

1. 24 inch minimum of cover in streets; 18 inch minimum of cover otherwise.
2. For main connections, a protective sleeve designed for the specific type of connection shall be used to reduce stress concentrations.
3. At building wall the transition from plastic pipe to more rigid piping should be protected from shear and bending as at the main connection. Where possible the trench bottom should be compacted and smoothed, where not possible, some other method of continuous support for the service line should be provided over the disturbed soil.
4. The service line shall be graded so as to drain any possible condensate into the main.
5. Each service line shall be installed so as to minimize anticipate piping strain and external loading.
6. Each service line shall have a service line valve.

Inspection -

1. Plastic pipe and tubing shall be carefully inspected for cuts, scratches, gouges and other imperfections before use.
2. Each imperfection or damage that would impair the serviceability of plastic pipe shall be removed or repaired by a patching saddle.
3. The patch or sleeve material shall be the same type and grade and wall thickness shall be at least equal to that of the pipe. The sleeve shall extend at least 1/2 inch beyond the damaged area. The joint line between the halves shall be as far as possible from the defect.
4. Each plastic pipe joint shall be made in accordance with manufacturer’s recommendations using the proper type equipment required for the type of joint required. Plastic pipe may not be joined by a threaded joint or miter joint.

Installation of pipe in a ditch. For mains, a minimum covering of 24 inches -

1. Piping shall be installed with sufficient clearance, or shall be insulated from any source of heat, such as steam or electric power lines, particularly when installed in common trenches.
2. Inspect condition of ditch bottom just before pipe is lowered in.
3. Plastic pipe shall be laid on undisturbed soil, well compacted soil, well tamped soil, or other continuous support. Blocking shall not be used to support pipe.
4. Piping shall be installed with sufficient slack to provide for possible contraction.
5. Piping shall be installed with enough clearance to allow proper maintenance and to protect against damage that might result from proximity to other structures.
6. Bends should be free of buckles, cracks, or other damage, and may not be deflected to a radius smaller than the minimum recommended by the manufacturer.

Valve installation - Designed to protect the plastic material against excessive torsion or shearing load when the valve is operated and from any other secondary stresses that might be exerted through the valve or its enclosure. Prevent excessive strains at valve installations by:
1. Use a valve having low operating torque.
2. Anchor the valve body to resist twisting.
3. Make the transition from plastic to metal some distance from the valve. Any transition shall be supported by undisturbed or well compacted soil, by bridging or by sleeve encasement. Transition pieces 2 feet long will usually provide sufficient stabilization.
4. Use rigid pipe casing fastened to the valve. Casing pieces 2 feet long will usually provide stabilization.
5. Use a metallic pipe sleeve rigidly connected to the valve and encasing the plastic.

Cathodic Protection of Isolated Steel components in Plastic piping systems – Provide one of the following:
1. A small galvanic anode directly connected to the steel component.
2. Each steel component may be connected to a locator wire which is also connected to one or more galvanic anodes. To facilitate monitoring, the locator wire may be terminated at one or more service risers.
3. Use of certain metal fittings in plastic pipelines without coating, cathodic protection, and monitoring when adequate external corrosion control is provided by alloy.
4. Type 316 stainless steel or equally corrosion resistant component.

Valve enclosures - Where curb boxes or other enclosures are used, they shall not be supported by the plastic pipe and shall not in any way impose secondary stresses valve operating stems will be extended as per standard drawing.

TESTING (steel and plastic)
Mains shall be pressure tested at a minimum of 100 psi, for a minimum time of 4 hours. Service lines shall be pressure tested at a minimum of 50 psi, for a minimum time of 4 hours.
The campus has a chilled water system providing chilled water for cooling. The system consists of supply and return lines. Provide pipe and fittings per the requirements for water mains included in Section 33 11 00 Water Utility Distribution.

Valves - Class 250B butterfly valves, Mueller LineSeal XP Class 250, or equal. Chilled water system butterfly valves shall be flanged or mechanical joint type and shall be of the rubber seat type. Valve discs shall rotate 90 degrees from the full open position to the tight shut position. The valve seat shall provide a tight shutoff at a pressure differential of 150 p.s.i. upstream and 0 p.s.i. downstream in either direction. Valve shall open with a counter-clockwise rotation, have a 2 inch operating nut for buried valves and hand wheel for open installations, and have o-ring seals. Buried valves shall be rated for buried service and coated with asphalt varnish.

Branch connections (chilled water) - All connections to the chilled water distribution system shall use three valve tees per the requirements for water service lines greater than 2” as described in Section 33 11 00 Water

Tapping - When using tapping valves on the chilled water system, install an additional butterfly valve and abandon tapping valve in place (in open position).

Installation depth and Steam Pipe Crossings - Chilled water pipes shall be installed at depths that minimize thermal losses. For parallel PVC and steam pipes, there must be minimum 10 ft separation. For perpendicular crossings, there must be a minimum 5 ft distance between any PVC materials and the steam line. If the separation is less than these values, the pipe must be ductile iron and insulated a minimum of 10 feet on each side. The design professional shall provide heat transfer calculations and details if the pipe is located within this envelope.

STEAM ENERGY DISTRIBUTION

High-pressure steam and condensate piping and specialties for building HVAC and domestic water heating systems. All steam systems include a source of steam, a distribution system, and terminal equipment, where steam is used as the source of power or heat. One of the most important decisions in the design of a steam system is the selection of the generating, distribution, and utilization pressures. Considering investment cost, energy efficiency, and control stability, the pressure shall be held to the minimum values above atmospheric pressure that are practical to accomplish the required heating task, unless detailed economic analysis indicates advantages in higher pressure generation and distribution.

The piping system distributes the steam, returns the condensate, and removes air and non-condensable gases. In steam heating systems, it is important that the piping system distribute steam, not only at full design load, but at partial loads and excess loads that can occur on system warm-up. The usual average winter steam demand is less than half the demand at the lowest outdoor design temperature. However, when the system is warming up, the load on the steam mains and returns can exceed the maximum operating load for the coldest design day.
even in moderate weather. This load comes from raising the temperature of the piping to the steam temperature and the building to the indoor design temperature. Supply and return piping should be sized according to current American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Handbook, Volume I, Fundamentals.

For building exterior applications, i.e. steam vaults, the “high pressure” boundary is considered to be the steam trap. All piping material upstream of the steam trap is considered “high pressure” and will consist of components with a minimum pressure rating of 300 psig. The steam trap will have a minimum pressure rating of 300 psig. Components downstream of the trap will have a minimum pressure rating of 150 psig.

ENERGY CONSIDERATIONS
Steam and condensate piping system have a great impact on energy usage. Proper sizing of system components such as traps, control valves, and pipes has a tremendous effect on the efficiencies of the system. Pipe insulation also has a tremendous effect on system energy efficiency. It may also be economically wise to save the sensible heat of the condensate for boiler water make-up systems operational efficiency.

PIPE AND TUBE MATERIALS
Steam Supply Pipe: Black steel schedule 40 and 80 with beveled ends and welded joints (comply with Section II, Part C. ASME Boiler and Pressure Vessel Code). All threaded nipples used for steam pipe shall be Schedule 80 black iron.

Condensate line shall be Type K copper with brazed joints (Classification BAgl - 15 percent silphos). All changes of direction of steam condensate pipe shall be accomplished by use of tube turns fabricated of Type K copper pipe. Tube turns for condensate pipe shall have a radius equal to electrical conduit of a same pipe size.

INSULATION
All steam and condensate piping should be insulated. Preferred insulation is calcium silicate with aluminum jacketing. Premanufactured pipe and insulation systems for steam or condensate shall not be allowed.

VALVES & FITTINGS
All high pressure steam valves and fittings shall be rated for a minimum of 300 psig, including flanges, valves, strainers and traps. Fitting bend radius shall be 6 times the pipe diameter for all underground condensate piping. Fitting bend radius shall be a minimum of 3 times the pipe diameter for all aboveground and vault condensate piping.

PRESSURE REDUCING STATIONS
All steam pressure reducing valves should be operated by pneumatic pilot as opposed to spring loaded steam pilot operation. Provide dual PRV (1/3, 2/3 arrangement), Leslie model GPS (as basis of design) or equal. No by-pass around PRV station.
Provide dedicated air compressor (oil less) with dryer to serve Steam and EMS (Energy Management Systems). All compressed air tanks should be fitted with an automatic blowdown device that is electrically operated and utilizes a built in timer.

STEAM TRAPS
High pressure steam trap Type TLV, J-series 300psi cast steel, or equal. Steam traps are an essential part of all steam systems. Traps discharge condensate, which forms as steam gives up some of its heat, and direct the air and non-condensable gases to a point of removal.

Ideally, the steam trap should remove all condensate promptly, along with air and non-condensable gases that might be in the system, with little or no loss of live steam. Condensate is a by-product of a steam system and must always be removed from the system as soon as it accumulates, because steam moves rapidly in mains and supply piping, and if condensate accumulates to the point where the condensate fills the entire pipe and the steam can push alot of it at once, serious damage can occur from the resulting water hammer.

A steam trap is an automatic valve that can distinguish between steam and condensate or other fluids. Traps are classified as follows:

1. Thermostatic traps react to the difference in temperature between steam and condensate.
2. Mechanical traps operate by the difference in density between steam and condensate.
3. Kinetic traps rely on the different inflow characteristics of steam and condensate.

The following applies to all steam traps: Steam traps, regardless of type, shall be carefully sized for the application and condensate load to be handled, since both undersizing and oversizing can cause serious problems. Undersizing can result in undesirable condensate backup and excessive cycling that can cause premature failure. Oversizing might appear to solve this problem and make selection much easier because fewer different sizes are required, but if the trap fails, excessive steam can be lost.

PIPING INSTALLATION
There should be no underground steam/condensate under buildings.

1. All underground steam systems shall be installed a minimum of 10 feet from plastic piping and chilled water systems. All plastic underground piping must be kept at a 10 foot distance from steam/condensate lines unless approved by the University's Representative. When a crossing within the accepted limit is necessary, transition to an approved metallic pipe for at least 10 feet on either side of the intersection and insulate crossing utility 10 feet on either side. Maintain a minimum of 5 feet from other metal piping or conduits. If required to deviate from these requirements due to congested utility corridors, provide detailed heat transfer calculations identifying acceptable details for the University's review.
2. Use fittings for all changes in direction and all branch connections on steam system. Use annealed sweeps on all changes in direction on condensate system.
3. Install steam supply piping at a minimum, uniform grade of 1/4 inch in 10 feet downward in the direction of flow.
4. Install condensate return piping sloped downward in the direction of steam supply. Provide condensate return pump at the building to discharge condensate back to the Campus collection system. Condensate from traps within the building branch steam vaults shall be routed and connected to the building condensate receiver as condensate coolers will not be useful at these locations.

5. Make reductions in pipe sizes using eccentric reducer fitting installed with the level side down.

6. Anchor piping to ensure proper direction of expansion and contraction. Provide expansion loops and joints. Design Professional shall provide details for anchors, supports, guides and expansion loops on Drawings. Support of steam and condensate piping must account for expansion and contraction, vibration and the dead load of the piping and its contents. Location of supports, anchors, and guides for underground piping shall meet insulation manufacturer’s requirements.

7. Underground Condensate lines shall have boot silver brazed to bottom of line at each anchor, support or guide.

8. Install drip legs at low points and natural drainage points in the system, such as at the ends on mains, bottoms of risers. In straight runs with no natural drainage points, install drip legs at intervals not exceeding 200 feet where pipe is pitched down in the direction of the steam flow. NOTE: Drip legs shall be sized properly to separate and collect the condensate. For automatic warm-up, collecting legs should always be the same size as the main and be at least 28 inches long to provide the hydraulic head for the pressure differential necessary for the trap to discharge before a positive pressure is built up in the steam main. Actual drip leg details shall be presented on the drawings.

9. Size drip legs at vertical risers full size and extend beyond the rise. Size drip legs at other locations same diameter as the main. Provide an 18 inch drip leg for steam mains smaller than 6 inches. In steam mains 6 inches and larger, provide drip legs sized 2 pipe sizes smaller than the main, but not less than 4 inches.

10. Condensate return mains shall be anchored inside manholes.

11. Drip legs, dirt pockets, and strainer blowdowns shall be equipped with gate valves to allow removal of dirt and scale.

12. Install steam traps close to drip legs.

STEAM VAULTS
The following items are a minimum for a safe and functional Steam Vault. Refer to drawing “Steam Manhole” in CS&DG Section IV.

1. 24 inches or larger round aluminum vented manhole access cover. Open grate cast steel may be used in traffic areas.

2. Metal access ladder with non-slip rung construction extending to the top of the vault opening.

3. At least one additional louvered opening ducted to the bottom of the vault to provide natural venting.

4. Concrete floor with a pre-cast sump pit.

5. Dedicated electrical service into the vault with a switched light(s) and duplex service receptacle.
6. Heat rated sump pump plumbed outside to a sanitary drain.
7. Condensate cooler

STEAM TRAP INSTALLATION
Install steam traps in accessible locations. Refer to drawings in CS&DG Section IV for a typical trap detail. Steam traps should be piped in such a way as to make service and inspection of operation as safe and efficient as possible. The sequence of piping (from upstream) should be: Shut off valve—Union—Strainer—Trap—Cross Tee with test valve—Check valve—Union—Shut off valve and pressure temperature gauges. This permits removing the trap set as a unit for repair, or replacement. It eliminates the safety hazard of trying to clean the strainer while the strainer is still attached to the system. It permits the most effective testing possible (observation of trap discharge). Install off-setting 90 degree elbow between check valve and union for easy removal of steam trap assembly. Manual by-pass shall not be provided across traps.

VALVE APPLICATIONS
1. Rated shut-off duty valves at each branch connection to supply mains, and elsewhere as indicated.
2. Install gate valves at low points in mains, risers, branch lines, and elsewhere as required for system drainage.
3. Install high point vents and low point drains for venting and draining the system.
4. Install appropriately placed test points for hydrostatic testing. Minimum point size to be 1 inch diameter pipe with schedule 80 pipe and 300 psig rated fittings and valves.

CLEANING
Flush the system with clean water. Remove, clean, and replace strainer screens.

TESTING
The following procedures are paraphrased from the ASME B31.9, code for pressure piping.
Preparation for Testing - Prepare steam and condensate piping in accordance with ASME B 31.9 and as follows: Leave Joints including welds uninsulated and exposed for examination during the test.

Testing - Test steam and condensate piping as follows:
1. Use water as the testing medium.
2. Subject piping system to a hydrostatic test pressure which at every point in the system is not less than 1.5 times the design pressure for a minimum of 200 psig for 4 hours. Make a check to verify that the stress due to pressure at the bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength, or 1.7 times the “SE” value in Appendix A of ASME B31.9.
3. After the hydrostatic test pressure has been applied for at least 10 minutes, examine the system for leakage. Eliminate leaks by tightening, repairing, or replacing components as appropriate, and repeat hydrostatic test until there are no leaks.
ELECTRICAL UTILITY POLES

Conform to the following guidelines:

1. All overhead main distribution wire will be 336.4mcm ACSR, Number 4 through number 2.
2. All pole top construction will be Tri Mount with king pin, provide drawing as requested by PG&E.
3. All guys will use insulating rod (fiberglass, with clevis and tongue ends). Guy insulators shall be porcelain.
4. All overhead lines will be 3-phase, 3 wire.
5. Inline hook stick isolating load break switches will be installed where practical to aid in isolating sections for repair. See Section 33 77 00 Medium Voltage Utility Switchgear and Protection Devices.
6. All cross arms and brackets will be of steel or fiberglass construction.
7. All Potheads on risers will be porcelain.
8. All cable terminations in cabinets will be cold shrink with skirts (no roll overs).
9. Overhead lines will have fault indicators installed at convenient location to facilitate fault location.
10. Surge arresters shall be used on trunk or backbone feeders during the transition from overhead to underground. The lighting arrester shall be installed on the riser when determined necessary.

ELECTRICAL UNDERGROUND DUCTS AND MANHOLES

Electrical Duct - All 12KV electrical power ducts shall be constructed with concrete encasement and with minimum cover as described in Division 26, Section 26 00 00 Underground Ducts and Manholes. All ducts shall drain to a manhole or pullbox. All splices shall be sealed in epoxy encapsulated splice kits.

ELECTRICAL MANHOLES

Manholes shall be sized to accommodate all feeders, wiring, switching, and extensions to future buildings. Manholes shall be reinforced concrete, cast-in-place, or precast and designed for H20-44 wheel loading. Provide knockouts for future duct connections.

Electrical manholes shall be an octagon design. Minimum inside clear width shall be 8 feet-0 inches, minimum inside clear height 8 feet-0 inches. Locate sumps in manholes with powered sump pumps in an unused corner and for manholes without a powered sump pump, locate sumps in the center.

Pulling irons shall be installed the wall opposite of each duct line entrance. Spacing of manhole steps or ladder rungs shall not exceed 16 inches. Manholes with equipment shall be equipped with convenience receptacles for equipment and appropriate switching and lighting.
Manhole Cover - Manholes should include manhole covers stamped/cast with "ELECTRICAL" in the top of cover. Manhole covers should be two-piece, covered with a 48 inch outer-ring and a 24 inch inner-ring complete with two 2 inch opening for manhole hook accessibility.

Medium Voltage Pullbox - Minimum size of pullboxes shall be 4 ft x 6 ft x 3 ft, precast reinforced concrete. Pullboxes shall be rated for HS 20-44 wheel loading and stamped/cast with "ELECTRICAL" in the top of cover.

MANHOLE AUXILIARY POWER SYSTEM
The main 480 volt feed comes from steam plant emergency generator and is routed to manholes where it is transformed down to 120 volts. System shall provide 240/120 volt single phase power in each of the Manholes from Emergency Power Panel. The system shall consist of the following main elements.
1. Connection to the existing Auxiliary Power system.
2. Cable Bus
3. Load Transformer Service Unit
4. Connection to the existing auxiliary power circuits in each Manhole for the existing lighting, convenience power, and sump pumps.
5. Connection to circuit Interrupters for Control Power.
The entire system in the Manholes shall be water tight, submersible in each Manhole, from 6 inches below the Manhole ceiling to the bottom of the Manhole.

Cable Bus - 480 V, 2 wire, from the connection to the existing system, common to a load transformer in each of the Manholes. A Multi Conductor Cable, 3 conductor No. 6 AWG stranded copper conductors, sheathed. Cable type USE, with two Phase conductors and one ground conductor. Phase conductors color coded, insulated 600 volt XHHW. Ground conductor bare. Sheath-gray neoprene.

Load Transformer Service Units - 480/240/120 V, 5kVA single phase, two winding with primary and secondary breakers, provided in each manhole. Encapsulated. Primary connection to terminals in a junction box. Primary Circuit Breaker, 10/2, 480 volt. Secondary connection to three 15/1 circuit breakers in a junction box. Secondary panelboard consisting of four 15/1 circuit breakers, 120 volt. Transformer secondary midpoint grounded to the local ground cable. NEMA 1A general purpose enclosure.

Miscellaneous Devices -
2. Terminal Blocks: Provide a 3 point (circuit) 3 tier (tier common) assembly for No. 10 and No. 12 conductors. Bottom 2 tiers for No. 10 conductors, top tier for No. 12 conductors. Unit shall be Cage Clamp type for 2 conductors each side of terminal as manufactured by WAGO Corp., T&B Corp., or equal.
3. Boxes: Cast Aluminum or steel with bolt-fastened cast gasketed covers.
4. Raceway in Manholes: Rigid galvanized steel conduit with threaded watertight couplings and connectors

MEDIUM VOLTAGE Wiring

1. Conductor size:
 a. 200amp Feeders: No. 2/0 Copper
 b. 600amp Feeders: parallel run of 350 mcm Copper
 c. All other Larger Cables: Copper
2. Insulation: EPR, 220 mils (min.)
4. Shield: Extruded semi-conducting EPR, in void free contact with the extruded insulation.
5. Fault indicators shall be current reset type capable of automatically being reset when line current is restored. Furnish with auxiliary contacts for remote indication of indicator status.
6. Shield Drain must be spiral wrapped copper tape, 0.005 inch thick min. Wrap half lapped shall not exceed 25 percent.
7. Encapsulating Jacket: Extruded HMW-PE, CPE or PVC outer jacket enclosing the cable assembly.
8. Conductor rating shall be 105 degree C normal, 140 degree C emergency, 250 degree C short circuit conditions operating temperatures. 133% insulation level.
9. The assembly process shall be “triple extrusion” where the strand shield, insulation, and insulation shield are extruded on the conductor in a single operation. All conductors shall be class B stranded, compact concentric.

CABLE CONNECTIONS

Provide Elastimold non-load break or equal. All outside terminations shall be glass with skirts. All inside terminations shall have skirts to 5 additional separations.

1. Apparatus Connections, 200amp. Used for connection of a feeder, cable 4/0 and smaller, to a device. Consists of the following components:
 b. Bushing Insert: Elastimold No. 1501A1, or equal.
 c. Elbow Connector: Elastimold No. 156LR Non-Loadbreak Elbow, with grounding adapter and Bailing Assembly, or equal.
2. Apparatus Connections, 600amp. Used for connection of a feeder, cable 250 mcm, and larger, to a device. Consists of Elastimold 650LR apparatus connection with grounding adaptor, or equal.
3. Junction, 600amp, 4 way. Used for joining a combination of cables.
4. Transition Splices. Used for connection of lead sheathed, paper insulated, cable (PILC) to EPR or XLPE insulated, jacketed cable. Raychem No. HVS1580 High Voltage Transition (stop) Joint or equal. Splice is not to be connected to ground.
5. Non Separable Splices, 200amp. Used where required for the connection of cables 4/0 AWG and smaller. Elastimold PCJ type 2 Splice with an Elastimold No. 30 MA cable Shield Adaptor each side of the Splice or equal.

15 KV Cable Splice -
1. Types - Splice kits shall be of the heat-shrinkable elastomeric type, Raychem HVS-1520S Series, or the separable connector elbow type, Elastomold 655LR Series, Cooper Power Systems or equal. Cable splice kits shall be the standard product of a single manufacturer.
2. Materials - Cable splice kits shall contain materials that are completely compatible with the conductors, insulations, shields, and jackets and which are approved by the cable manufacturer.
3. Cable splices shall be suitable for continuous immersion in water.

Medium Voltage Separable Connectors - Provide ESNA-type connectors with insulated bushings. Elastimold or equal (Non-Load Break). Provide capacitance test point. Connectors shall satisfy requirements of IEEE 386 and shall be designed for use with the specific cable and type of installation required. The manufacturer shall provide all components and at least two copies of complete directions for assembling, and putting the unit into service, (one of which shall be submitted for record).

TESTING
High Potential Tests -
After cables are installed, a high potential test shall be performed on each conductor. An initial voltage shall be applied and increased in no less that 5 uniform steps up to the maximum test voltage. The minimum time at each step shall be no less than required for test current to stabilize. The high potential test shall be a DC test. If the applied voltage is interrupted at any time during the test on a conductor, the test shall be started again from the beginning. Hold final voltage for 5 min. Test Potentials shall be as follows:

<table>
<thead>
<tr>
<th>Nominal Cable Rating</th>
<th>DC Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Voltage</td>
<td>15KV</td>
</tr>
<tr>
<td>Final Voltage</td>
<td>15KV</td>
</tr>
<tr>
<td></td>
<td>63KV</td>
</tr>
</tbody>
</table>

Reports of voltage test results shall be submitted for review with 3 copies of each report prepared in the following format:
1. A separate 8-1/2 by 11-inch report sheet shall be prepared for each separately tested section of high voltage cable.
2. Each report shall be headed with the project identification.
3. The following additional data shall appear on each report sheet:
 a. Date
 b. Name of operator performing test
 c. Name of company operator is employed by
 d. Section of cable tested
 e. Type of cable insulation
 f. Cable length
g. Nominal rating of cable
h. Cable manufacturer and product identification
i. Size of conductor
j. Identification of test equipment
k. Test type
l. Project identification
m. Signature of the test equipment operator and the signature of the Contractor.

4. The test results shall be plotted on a log-log graph and shall have microamperes on the left and kilovolts across the bottom. The graph shall also provide a current vs. time test to be recorded in 1-minute intervals after final test voltage has been reached.

Insulation Tests: Electrical insulation resistance tests shall be made by the Contractor in the presence of the University's Representative for all new sectionalizing switches using a constant voltage magneto generator capable of measuring 2,000 megohms. Tests shall be made between phase conductors and grounded phase conductors. Insulation resistance shall not be less than 750 megohms. The Contractor shall furnish the University's Representative with a record of all insulation resistance measurements.

MEDIUM VOLTAGE UTILITY SWITCHGEAR AND PROTECTION DEVICES

CIRCUIT INTERRUPTERS

Three phase circuit interrupters for automatic over-current protection of 12 kV underground feeders and for remote manual switching of a circuit. Unit shall be controlled with electronic control panel included with the assembly, and field constructed push button control station. Tripping and closing signals are initiated from the control unit. Signals from the control unit energize the operating circuits in the recloser and release the stored-energy trip mechanism when an over current occurs. Recloser units and control panels shall be mounted on the wall of the manhole and remote manual control units shall be mounted at the manhole entrances.

Trayer Engineering Corporation or equal (basis of design)

1. Ratings:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Continuous Voltage</th>
<th>Interrupting Current</th>
<th>Momentary Current</th>
<th>Control Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,470</td>
<td>200</td>
<td>12,000A</td>
<td>6,000 (min)</td>
<td>20 ac</td>
</tr>
</tbody>
</table>

2. Vacuum Interrupter: The Interrupter unit to be vacuum style, controlled by stored energy trip and close mechanisms. Contacts to be copper alloy material.

3. Electronic Control Panel Enclosure: Type National Electrical Manufacturers Association (NEMA) 12 raintight enclosure mounted on manhole wall.

4. Manual Control: Provide the following manual control functions:
 a. Electric operated Trip and Close, with control switch at the Control Panel, with flag indication of interrupter Open or Closed.
 b. Mechanical trip and close, operable without control power form either the line switched or a remote power source.
 c. Interrupter padlockable in the open position.
 d. All operators shall be able to be padlocked.
5. Remote Manual Control: Provide a remote trip and close push button control station for each interrupter as follows:
 a. Two-unit Pilot Light Station indicating Interrupter OPEN and Interrupter CLOSED.
 b. Two unit Push Button Station for interrupter TRIP and interrupter CLOSE.

7. Automatic Control: Provide the following functions, all field setable:
 a. Phase over current, inverse time trip - 200 amps.
 b. Ground over current, inverse time trip - 50 amps.
 c. Inrush restraint on phase and ground trips.
 d. Provide indication of cause of trip.

8. Primary Connections: Universal bushing wells, 200 amp, each with a parking stand.

9. Vacuum Circuit Switching Unit: Unit comes with electric and manual operation. Unit is an assembly of frame mounted vacuum switching bottles, current sensing transformers, auxiliary switches and electric operator with oil insulation in steel housing. Unit to have dead front construction and lifting lugs.

10. Low voltage closing solenoid to be installed to provide contact closing energy.

11. Universal Bushing Wells: Compatible with all industry standard plug inserts for load break and non load break separable UD cable connectors rated for 200 amp, 15 kV service. Recloser to be supplied with the following bushing arrangement: 200 amp wells load and source.

12. Low Voltage Closing: Include equipment for internal operation of low voltage DC closing solenoid and associated wiring.

13. Auxiliary Switch: For remote indication of recloser contact position or switching. Three stage switch to be mounted on the recloser frame.

14. Bushing Type Current Transformer: Multi ratio current transformers to be factory installed on load side bushings. Primary/secondary current ratios of 600:5 to be provided. Secondary taps to be factory wired to terminal blocks on the control panel.

15. Control Cable: As required for sensing and control between Recloser and Control Panel and to bring the auxiliary contacts to the control panel. Cable Connection to Recloser shall be waterproof, connection to the Control Panel with screw connectors.

16. Mounting Bolts for Recloser: Four 1/2 inch by 6 inch hex head expansion bolts, with 4 1/2 inch expansion anchors. Bolts and anchors galvanized or cadmium plated.

Recloser Ratings - Vacuum Switching Unit

 Number of poles..3
 Voltage..15 kV, 3 Phase
 Current, normal......................................200 Amp
 Current, interrupting..............................200 Amp
 Current, 1 Second12,000 Amp
 Operation..Spring stored energy trip and close
 Instrument TransformersPhase current and ground Current.
 Spring Charging24-Volt DC Universal Motor
 Test Voltage AC - 1 min.35 kV
 Test Voltage DC - 15 min55kV

 No. of operations at
Rated current 230
Control Voltage 24-Volt DC

Electronic Control Panel Assembly - A unit for automatic over current operation and remote manual operation of the switching unit. Control to include accessories for remote close with cold load pickup and annunciator type target; automatically reset; phase and ground.
1. Control Power Supply: provide self-contained, internally supplied control power.
2. Ground Connection Fitting: 1/4 inch by 1 inch steel stud bolt welded to the enclosure.
3. Control Unit Enclosure: The Control Panel Assembly shall be mounted in a type 12 NEMA weather proof cabinet with hinged, captive bolt fastened door, with provision for padlocking closed. Finish coat of epoxy enamel.

Remote Manual Control Station
1. Pilot Light Station, 2 lights, 1 push button switch. Station in cast gasketed submersible enclosure. One light RED and 1 light GREEN, each with lamp transformer and lamp, labeled OPEN and CLOSED. Pushbutton switch 2 position momentary contact labeled LAMP TEST. Units General Electric CR103J, Square D, or equal.
2. Push Button Control Station - Heavy Duty Oil Tite pendant type Control Station. Each station two unit, each unit two position momentary contact, depress to close, in steel enclosure. Push button switches labeled OPEN and CLOSE. Units General Electric Model CR2940 FG202A, Square D, or equal.
3. Retractable Cord - Four conductors No. 18 AWG Type SJ O coiled retracting cord, 48-inch coiled length extensible to 25 feet. Cord Belden NO. 9483, Alpha Wire Co., or equal.
4. Control Station Hook - For supporting the Push Button Control Station of the roof of the manhole available to the operator. Galvanized open hook bolt, 3/16 inch, installed in an afterset insert nut. The nut to provide not less than 2 inch concrete penetration.

PADMOUNT MEDIUM VOLTAGE SWITCH AND VACUUM INTERRUPTOR COMBINATION
Switches shall be designed, tested and built in accordance with ANSI C37.72. Each switch assembly shall be rated as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. design voltage, kV</td>
<td>15.5</td>
</tr>
<tr>
<td>Impulse level (BIL), kV</td>
<td>95</td>
</tr>
<tr>
<td>Cont. & loadbreak, Amps</td>
<td>600</td>
</tr>
<tr>
<td>1 min., withstand, AC kV</td>
<td>34</td>
</tr>
<tr>
<td>15 min. withstand, DC kV</td>
<td>53</td>
</tr>
<tr>
<td>Mom. Current, kA Asym.</td>
<td>20</td>
</tr>
<tr>
<td>Fault-close, kA Asym.</td>
<td>20</td>
</tr>
<tr>
<td>1 sec. Current, kA Sym.</td>
<td>12</td>
</tr>
<tr>
<td>10 operation overload interrupt capability, A</td>
<td>2,000</td>
</tr>
<tr>
<td>Load interrupt, endurance at 600A, Operations</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Switch Construction - All switch components and entrances shall be assembled in a totally welded 7-gauge #304 stainless steel tank. Entrances shall be internally connected and
capable of handling momentary and continuous current duty. The switch shall contain no electrically floating metallic parts or components. Switches shall be shipped factory filled with #10 insulating oil. Tank shall be designed to withstand 7 psig internal pressure and an external pressure of 7 psig without affecting the performance of the switch.

Cable Entrances: Cable entrances shall be tested to ANSI/IEEE 386 and be 600A apparatus bushings.

Switch Operation -
1. Each switching way is to be equipped with an internally mounted operating mechanism capable of providing quick-make, quick-break operation in either switching direction. The mechanism shall use compression type springs to assure long life and reliability. All switch positions are to be clearly identified and padlockable.
2. The operating mechanism shall be actuated from outside the switch tank by a stainless steel operating handle.
3. The operating shaft shall be made of stainless steel for maximum corrosion resistance. A double “O” ring type operating shaft seal shall be used for a leak resistant, long life seal.
4. Switch shall have 24 vdc linear actuator for opening and closing.

Switch Contacts - Switch contacts shall be made of copper/tungsten alloy to assure permanent low resistance and to avoid sticking during operation. Temperature rise shall not exceed ANSI C37.72 standards for this type of device.

Factory Production Tests: Each individual switch shall undergo a mechanical operation check, leak detection test. Switch shall be AC hi-pot tested 1 minute phase-to-phase and phase-to-ground and across the open contacts. Circuit resistance shall be checked on all ways.

Vacuum Interrupter - The vacuum interrupter shall be a non-reclosing, manual reset device incorporating vacuum bottles. It shall be designed, tested and built per applicable sections of ANSI C37.60. The vacuum interrupter assembly itself shall be rated:

<table>
<thead>
<tr>
<th>Max. design voltage, kV</th>
<th>15.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse level (BIL), kV</td>
<td>95</td>
</tr>
<tr>
<td>Cont. & loadbreak, Amps</td>
<td>200 or more</td>
</tr>
<tr>
<td>1 min., withstand, AC kV</td>
<td>34</td>
</tr>
<tr>
<td>Sym. Interrupt rating, kA</td>
<td>12</td>
</tr>
<tr>
<td>Momentary rating, kA</td>
<td>20</td>
</tr>
</tbody>
</table>

ANSI C37.60 Fault Interrupting Duty

<table>
<thead>
<tr>
<th>Percent of Maximum Interrupting Rate</th>
<th>Approx. Interrupting Current, Amperes</th>
<th>Number of Fault Interruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20 percent</td>
<td>2,000</td>
<td>44</td>
</tr>
<tr>
<td>45-55 percent</td>
<td>6,000</td>
<td>56</td>
</tr>
<tr>
<td>90-100 percent</td>
<td>12,000</td>
<td>16</td>
</tr>
<tr>
<td>Total # of Fault Interruptions:</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

Vacuum Interrupter Operation -
1. The vacuum interrupter shall consist of a vacuum bottle and a spring-assisted operating mechanism.
2. The vacuum interrupter operating mechanism shall consist of the support assembly, linkage, spring latch mechanism and solenoid utilized for electronic tripping. Interrupting time shall be three cycles maximum (50 mSec).
3. Each tap phase is to be equipped with an individual vacuum interrupter fully enclosed in an oil-insulated switch tank. Electrical opening of the vacuum interrupter shall be by a solenoid that is activated from the control box external to the switch tank. Electrical opening shall be field selectable. Closing (reset) of the vacuum interrupter shall be manual with the use of a mechanical lever.

4. The mechanical linkage assembly shall provide for a “trip-free” operation that allows for the vacuum interrupter to interrupt independent of the operating lever if closing into a faulted or heavily loaded phase or circuit. Interruption or reset shall be three phase.

Electronic Control -
1. Drawout overcurrent relays shall be provided to sense load and fault current on each phase of the load tap circuits. Relays shall be powered by a capacitor trip devices powered by a fused potential transformer mounted inside the oil-insulated switch tank. No external power source shall be required.
2. The relays shall monitor the load or fault current on the individual phases of the tap circuits using input from the current transformers.
3. All tripping shall be three phase. Temperature range shall be -40 degrees C to +85 degrees C.
4. Manual tripping shall be provided.

Enclosure -
1. The enclosure for the switch assembly shall be made of 11-gauge #304 stainless steel and manufactured to ANSI C37.72 and C57.12.28 standards. After assembly, the enclosure shall be finished with a coating of UV resistant paint.
2. Enclosures shall be filled with transformer oil.
3. The enclosure shall be provided with four lifting eyes that provide a balanced lift for the complete assembly.
4. Enclosure access doors shall have stainless steel hinges. Access doors to the power cable compartments shall be equipped with a latch mechanism and penta-head bolt assembly.

Standard Components -
1. Oil fill port.
2. Four lifting provisions.
3. Welded entrance bushings.
4. Oil level gauge.
5. Grounding provisions for one 1/2-inch – 13 ground connection per switch way plus provisions for one 1/2-inch – 13 tank ground connections.
6. Three-line diagram and stainless steel nameplate, permanently mounted.
7. Stainless steel tank and lids, stainless steel and brass fasteners, with no external aluminum parts.
8. Tank coating to be light gray (ASA 70) paint with primer, 3-mil-thick minimum.
9. Padlockable operating mechanism with position indication.
11. Open/closed indicators mounted to the moving interrupter shaft.

Field Testing: Provide the services of a factory representative to test switches and interrupters. The test shall include
1. Insulation test using 2,500 vdc source.
2. High potential test: Test each pole to be ground for 1 minute at 75 percent of DC test conducted at factory. The University will furnish records of previous factory test results.
3. Contact resistance test across each switch blade.
4. Operation test of all switch and vacuum interruptors.
MEDIUM VOLTAGE LOAD BREAK SWITCHES (SECTIONALIZING SWITCHES)

Three phase 600 amp, 12.47kV underground feeders and for remote switching of a circuit. Each unit shall be manufactured by Trayer and controlled by an electronic control panel furnished with the assembly, and a remote push button control and Pilot Lamp station. The complete assembly, including the control panels, shall be capable of operation, without damage, when fully submerged in water to a depth of 5 feet.

Ratings -
1. Operating Voltage ...15,500 volts line to line
2. BIL ..95kV
3. AC Withstand, on minute ...35kV
4. DC Withstand, 15 minutes ...53kV
5. Continuous Current ...600 amps
6. Fault Current Interrupting ..12000 amps
7. Min. # of Fault Operations (50 percent rating at X/R= max.)100
8. Control Power, from external source ...120 volts a.c.
9. Cable Connections ...600-amp bushing for separable connection

Provide ground connection fittings, remote manual control panel station and enclosure, and manual control features as required under CIRCUIT INTERRUPTER above. In addition provide:

1. Automatic Control - Provide the following functions, all field setable:
 a. Phase overcurrent, inverse time trip - curve C, 200 amp minimum trip.
 b. Phase Current instantaneous trip, adjustable with dip switch field set at a multiple of minimum pick up. Set for 1 b times minimum pick up.
 c. Ground overcurrent, inverse time trip - curve 1, 20 amp minimum trip.
 d. Inrush restraint on phase and ground trips.
2. Annunciation - Provide a labeled flag to indicate phase, ground fault, or instantaneous trip initiation.
3. Auxiliary Switch - Provide a four circuit (2 Form A, 2 Form B) auxiliary switch, with cable connection to terminals in the Control Panel.

Execution -
1. Interrupter Installation in Manholes - Mount horizontal on the support frame, the support frame mounted on the wall of the manhole.
 a. Cable Connections - Apparatus Bushing for separable connector, 600-amp. Cable to be trained and tied in such configuration that the connecting fitting can be pulled without undoing or relocating the cable bundles.
 b. Control Cable termination - Control cable to be terminated in the Interrupter at the factory. Terminate the free end in the Electronic Control Panel with factory installed cord grip connector.
2. Control Panel Assembly Installation - Obtain control power from the manhole auxiliary power circuit. Connections to circuit shall be watertight. Setting and Adjustment of the electronic relays will be done by the University.
3. Manual Remote Control
 a. Install the remote manual control devices to permit the opening and closing of the interrupter from outside the manhole while observing the lamps indicating open or closed condition of the interrupter. Install device suspended on a hook called for at a location convenient to the operator to grasp from the manhole access ladder. Location must be approved by the University's Representative prior to installation.
 b. Retractile Cord - Install with cord grip connectors to the Pilot Light Station and to the Control Station.
 c. Control Wiring - Run in rigid steel conduit, except for the retractile cord between the pilot light station and the push button control station.

Primary Sectionalizing Switches: The sectionalizing switches shall be SF₆ filled type rated 15,000 volts, 600 amperes, load-break 40,000 amperes momentary. Switch shall be 3 or 4-way type, and each way shall be 3-pole, 2-position, “on-off” position. Cable entrances shall be through the top of the tank and shall be apparatus bushings with ESNA type 600 amp elbow connectors for single-conductor as required. Handle on each way of each switch shall be fitted with spring operator.

The switch shall be mounted on a frame to the wall in the manhole and shall be complete with SF₆ gas. The inside of the tank shall be painted white. The switch shall be fitted with pressure gauge and valve for filling. The switch shall be furnished with provisions for padlock interlock on the outside ways of the switch and shall prevent motion of this way to any position without the key (which will be release only when existing sectionalizing switch on the supply side is locked in off or on position.

TESTING
Field Testing of Medium Voltage Interruptors - A factory representative shall test switches and interrupters as follows:
1. Insulation test using 2,500 vdc source.
2. High potential test: Test each pole to be ground for 1 minute at 95 percent of DC test (75% for padmount switches) conducted at factory. The University will furnish records of previous factory test results.
3. Contact resistance test across each switchblade.
4. Operation test of all switch and vacuum interruptors.

The following field tests will be performed by the University's Representative.
1. Manual Trip and close tests from each location where this function is specified.